HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmfnlb Structured version   Visualization version   GIF version

Theorem nmfnlb 29695
Description: A lower bound for a functional norm. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
nmfnlb ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ ∧ (norm𝐴) ≤ 1) → (abs‘(𝑇𝐴)) ≤ (normfn𝑇))

Proof of Theorem nmfnlb
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmfnsetre 29648 . . . . 5 (𝑇: ℋ⟶ℂ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇𝑦)))} ⊆ ℝ)
2 ressxr 10679 . . . . 5 ℝ ⊆ ℝ*
31, 2sstrdi 3978 . . . 4 (𝑇: ℋ⟶ℂ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇𝑦)))} ⊆ ℝ*)
433ad2ant1 1129 . . 3 ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ ∧ (norm𝐴) ≤ 1) → {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇𝑦)))} ⊆ ℝ*)
5 fveq2 6664 . . . . . . . . 9 (𝑦 = 𝐴 → (norm𝑦) = (norm𝐴))
65breq1d 5068 . . . . . . . 8 (𝑦 = 𝐴 → ((norm𝑦) ≤ 1 ↔ (norm𝐴) ≤ 1))
7 2fveq3 6669 . . . . . . . . 9 (𝑦 = 𝐴 → (abs‘(𝑇𝑦)) = (abs‘(𝑇𝐴)))
87eqeq2d 2832 . . . . . . . 8 (𝑦 = 𝐴 → ((abs‘(𝑇𝐴)) = (abs‘(𝑇𝑦)) ↔ (abs‘(𝑇𝐴)) = (abs‘(𝑇𝐴))))
96, 8anbi12d 632 . . . . . . 7 (𝑦 = 𝐴 → (((norm𝑦) ≤ 1 ∧ (abs‘(𝑇𝐴)) = (abs‘(𝑇𝑦))) ↔ ((norm𝐴) ≤ 1 ∧ (abs‘(𝑇𝐴)) = (abs‘(𝑇𝐴)))))
10 eqid 2821 . . . . . . . 8 (abs‘(𝑇𝐴)) = (abs‘(𝑇𝐴))
1110biantru 532 . . . . . . 7 ((norm𝐴) ≤ 1 ↔ ((norm𝐴) ≤ 1 ∧ (abs‘(𝑇𝐴)) = (abs‘(𝑇𝐴))))
129, 11syl6bbr 291 . . . . . 6 (𝑦 = 𝐴 → (((norm𝑦) ≤ 1 ∧ (abs‘(𝑇𝐴)) = (abs‘(𝑇𝑦))) ↔ (norm𝐴) ≤ 1))
1312rspcev 3622 . . . . 5 ((𝐴 ∈ ℋ ∧ (norm𝐴) ≤ 1) → ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ (abs‘(𝑇𝐴)) = (abs‘(𝑇𝑦))))
14 fvex 6677 . . . . . 6 (abs‘(𝑇𝐴)) ∈ V
15 eqeq1 2825 . . . . . . . 8 (𝑥 = (abs‘(𝑇𝐴)) → (𝑥 = (abs‘(𝑇𝑦)) ↔ (abs‘(𝑇𝐴)) = (abs‘(𝑇𝑦))))
1615anbi2d 630 . . . . . . 7 (𝑥 = (abs‘(𝑇𝐴)) → (((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇𝑦))) ↔ ((norm𝑦) ≤ 1 ∧ (abs‘(𝑇𝐴)) = (abs‘(𝑇𝑦)))))
1716rexbidv 3297 . . . . . 6 (𝑥 = (abs‘(𝑇𝐴)) → (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇𝑦))) ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ (abs‘(𝑇𝐴)) = (abs‘(𝑇𝑦)))))
1814, 17elab 3666 . . . . 5 ((abs‘(𝑇𝐴)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇𝑦)))} ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ (abs‘(𝑇𝐴)) = (abs‘(𝑇𝑦))))
1913, 18sylibr 236 . . . 4 ((𝐴 ∈ ℋ ∧ (norm𝐴) ≤ 1) → (abs‘(𝑇𝐴)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇𝑦)))})
20193adant1 1126 . . 3 ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ ∧ (norm𝐴) ≤ 1) → (abs‘(𝑇𝐴)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇𝑦)))})
21 supxrub 12711 . . 3 (({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇𝑦)))} ⊆ ℝ* ∧ (abs‘(𝑇𝐴)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇𝑦)))}) → (abs‘(𝑇𝐴)) ≤ sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇𝑦)))}, ℝ*, < ))
224, 20, 21syl2anc 586 . 2 ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ ∧ (norm𝐴) ≤ 1) → (abs‘(𝑇𝐴)) ≤ sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇𝑦)))}, ℝ*, < ))
23 nmfnval 29647 . . 3 (𝑇: ℋ⟶ℂ → (normfn𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇𝑦)))}, ℝ*, < ))
24233ad2ant1 1129 . 2 ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ ∧ (norm𝐴) ≤ 1) → (normfn𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇𝑦)))}, ℝ*, < ))
2522, 24breqtrrd 5086 1 ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ ∧ (norm𝐴) ≤ 1) → (abs‘(𝑇𝐴)) ≤ (normfn𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  {cab 2799  wrex 3139  wss 3935   class class class wbr 5058  wf 6345  cfv 6349  supcsup 8898  cc 10529  cr 10530  1c1 10532  *cxr 10668   < clt 10669  cle 10670  abscabs 14587  chba 28690  normcno 28694  normfncnmf 28722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-hilex 28770
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-seq 13364  df-exp 13424  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-nmfn 29616
This theorem is referenced by:  nmfnge0  29698  nmbdfnlbi  29820  nmcfnlbi  29823
  Copyright terms: Public domain W3C validator