HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmfnval Structured version   Visualization version   GIF version

Theorem nmfnval 28705
Description: Value of the norm of a Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
nmfnval (𝑇: ℋ⟶ℂ → (normfn𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇𝑦)))}, ℝ*, < ))
Distinct variable group:   𝑥,𝑦,𝑇

Proof of Theorem nmfnval
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 xrltso 11959 . . 3 < Or ℝ*
21supex 8354 . 2 sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇𝑦)))}, ℝ*, < ) ∈ V
3 ax-hilex 27826 . 2 ℋ ∈ V
4 cnex 10002 . 2 ℂ ∈ V
5 fveq1 6177 . . . . . . . 8 (𝑡 = 𝑇 → (𝑡𝑦) = (𝑇𝑦))
65fveq2d 6182 . . . . . . 7 (𝑡 = 𝑇 → (abs‘(𝑡𝑦)) = (abs‘(𝑇𝑦)))
76eqeq2d 2630 . . . . . 6 (𝑡 = 𝑇 → (𝑥 = (abs‘(𝑡𝑦)) ↔ 𝑥 = (abs‘(𝑇𝑦))))
87anbi2d 739 . . . . 5 (𝑡 = 𝑇 → (((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑡𝑦))) ↔ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇𝑦)))))
98rexbidv 3048 . . . 4 (𝑡 = 𝑇 → (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑡𝑦))) ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇𝑦)))))
109abbidv 2739 . . 3 (𝑡 = 𝑇 → {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑡𝑦)))} = {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇𝑦)))})
1110supeq1d 8337 . 2 (𝑡 = 𝑇 → sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑡𝑦)))}, ℝ*, < ) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇𝑦)))}, ℝ*, < ))
12 df-nmfn 28674 . 2 normfn = (𝑡 ∈ (ℂ ↑𝑚 ℋ) ↦ sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑡𝑦)))}, ℝ*, < ))
132, 3, 4, 11, 12fvmptmap 7879 1 (𝑇: ℋ⟶ℂ → (normfn𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇𝑦)))}, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1481  {cab 2606  wrex 2910   class class class wbr 4644  wf 5872  cfv 5876  supcsup 8331  cc 9919  1c1 9922  *cxr 10058   < clt 10059  cle 10060  abscabs 13955  chil 27746  normcno 27750  normfncnmf 27778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-hilex 27826
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-br 4645  df-opab 4704  df-mpt 4721  df-id 5014  df-po 5025  df-so 5026  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-er 7727  df-map 7844  df-en 7941  df-dom 7942  df-sdom 7943  df-sup 8333  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-nmfn 28674
This theorem is referenced by:  nmfnxr  28708  nmfnrepnf  28709  nmfnlb  28753  nmfnleub  28754  nmfn0  28816  nmcfnexi  28880  branmfn  28934
  Copyright terms: Public domain W3C validator