MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmhmcn Structured version   Visualization version   GIF version

Theorem nmhmcn 23723
Description: A linear operator over a normed subcomplex module is bounded iff it is continuous. (Contributed by Mario Carneiro, 22-Oct-2015.)
Hypotheses
Ref Expression
nmhmcn.j 𝐽 = (TopOpen‘𝑆)
nmhmcn.k 𝐾 = (TopOpen‘𝑇)
nmhmcn.g 𝐺 = (Scalar‘𝑆)
nmhmcn.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
nmhmcn ((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) → (𝐹 ∈ (𝑆 NMHom 𝑇) ↔ (𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹 ∈ (𝐽 Cn 𝐾))))

Proof of Theorem nmhmcn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elinel1 4171 . . . 4 (𝑆 ∈ (NrmMod ∩ ℂMod) → 𝑆 ∈ NrmMod)
2 elinel1 4171 . . . 4 (𝑇 ∈ (NrmMod ∩ ℂMod) → 𝑇 ∈ NrmMod)
3 isnmhm 23354 . . . . 5 (𝐹 ∈ (𝑆 NMHom 𝑇) ↔ ((𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod) ∧ (𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹 ∈ (𝑆 NGHom 𝑇))))
43baib 538 . . . 4 ((𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod) → (𝐹 ∈ (𝑆 NMHom 𝑇) ↔ (𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹 ∈ (𝑆 NGHom 𝑇))))
51, 2, 4syl2an 597 . . 3 ((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod)) → (𝐹 ∈ (𝑆 NMHom 𝑇) ↔ (𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹 ∈ (𝑆 NGHom 𝑇))))
653adant3 1128 . 2 ((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) → (𝐹 ∈ (𝑆 NMHom 𝑇) ↔ (𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹 ∈ (𝑆 NGHom 𝑇))))
7 nmhmcn.j . . . . 5 𝐽 = (TopOpen‘𝑆)
8 nmhmcn.k . . . . 5 𝐾 = (TopOpen‘𝑇)
97, 8nghmcn 23353 . . . 4 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝐹 ∈ (𝐽 Cn 𝐾))
10 simpll1 1208 . . . . . . . . . 10 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝑆 ∈ (NrmMod ∩ ℂMod))
1110elin1d 4174 . . . . . . . . 9 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝑆 ∈ NrmMod)
12 nlmngp 23285 . . . . . . . . 9 (𝑆 ∈ NrmMod → 𝑆 ∈ NrmGrp)
13 ngpms 23208 . . . . . . . . 9 (𝑆 ∈ NrmGrp → 𝑆 ∈ MetSp)
1411, 12, 133syl 18 . . . . . . . 8 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝑆 ∈ MetSp)
15 msxms 23063 . . . . . . . 8 (𝑆 ∈ MetSp → 𝑆 ∈ ∞MetSp)
16 eqid 2821 . . . . . . . . 9 (Base‘𝑆) = (Base‘𝑆)
17 eqid 2821 . . . . . . . . 9 ((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))) = ((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))
1816, 17xmsxmet 23065 . . . . . . . 8 (𝑆 ∈ ∞MetSp → ((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))) ∈ (∞Met‘(Base‘𝑆)))
1914, 15, 183syl 18 . . . . . . 7 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))) ∈ (∞Met‘(Base‘𝑆)))
20 simpr 487 . . . . . . . . 9 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 ∈ (𝐽 Cn 𝐾))
21 simpll2 1209 . . . . . . . . . . . . . 14 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝑇 ∈ (NrmMod ∩ ℂMod))
2221elin1d 4174 . . . . . . . . . . . . 13 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝑇 ∈ NrmMod)
23 nlmngp 23285 . . . . . . . . . . . . 13 (𝑇 ∈ NrmMod → 𝑇 ∈ NrmGrp)
24 ngpms 23208 . . . . . . . . . . . . 13 (𝑇 ∈ NrmGrp → 𝑇 ∈ MetSp)
2522, 23, 243syl 18 . . . . . . . . . . . 12 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝑇 ∈ MetSp)
26 msxms 23063 . . . . . . . . . . . 12 (𝑇 ∈ MetSp → 𝑇 ∈ ∞MetSp)
27 eqid 2821 . . . . . . . . . . . . 13 (Base‘𝑇) = (Base‘𝑇)
28 eqid 2821 . . . . . . . . . . . . 13 ((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))) = ((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))
2927, 28xmsxmet 23065 . . . . . . . . . . . 12 (𝑇 ∈ ∞MetSp → ((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))) ∈ (∞Met‘(Base‘𝑇)))
3025, 26, 293syl 18 . . . . . . . . . . 11 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))) ∈ (∞Met‘(Base‘𝑇)))
31 nlmlmod 23286 . . . . . . . . . . . 12 (𝑇 ∈ NrmMod → 𝑇 ∈ LMod)
32 eqid 2821 . . . . . . . . . . . . 13 (0g𝑇) = (0g𝑇)
3327, 32lmod0vcl 19662 . . . . . . . . . . . 12 (𝑇 ∈ LMod → (0g𝑇) ∈ (Base‘𝑇))
3422, 31, 333syl 18 . . . . . . . . . . 11 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (0g𝑇) ∈ (Base‘𝑇))
35 1rp 12392 . . . . . . . . . . . 12 1 ∈ ℝ+
36 rpxr 12397 . . . . . . . . . . . 12 (1 ∈ ℝ+ → 1 ∈ ℝ*)
3735, 36mp1i 13 . . . . . . . . . . 11 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 1 ∈ ℝ*)
38 eqid 2821 . . . . . . . . . . . 12 (MetOpen‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))) = (MetOpen‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))
3938blopn 23109 . . . . . . . . . . 11 ((((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))) ∈ (∞Met‘(Base‘𝑇)) ∧ (0g𝑇) ∈ (Base‘𝑇) ∧ 1 ∈ ℝ*) → ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1) ∈ (MetOpen‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))))
4030, 34, 37, 39syl3anc 1367 . . . . . . . . . 10 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1) ∈ (MetOpen‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))))
418, 27, 28mstopn 23061 . . . . . . . . . . 11 (𝑇 ∈ MetSp → 𝐾 = (MetOpen‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))))
4222, 23, 24, 414syl 19 . . . . . . . . . 10 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 = (MetOpen‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))))
4340, 42eleqtrrd 2916 . . . . . . . . 9 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1) ∈ 𝐾)
44 cnima 21872 . . . . . . . . 9 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1) ∈ 𝐾) → (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1)) ∈ 𝐽)
4520, 43, 44syl2anc 586 . . . . . . . 8 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1)) ∈ 𝐽)
467, 16, 17mstopn 23061 . . . . . . . . 9 (𝑆 ∈ MetSp → 𝐽 = (MetOpen‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))))
4711, 12, 13, 464syl 19 . . . . . . . 8 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 = (MetOpen‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))))
4845, 47eleqtrd 2915 . . . . . . 7 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1)) ∈ (MetOpen‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))))
49 nlmlmod 23286 . . . . . . . . 9 (𝑆 ∈ NrmMod → 𝑆 ∈ LMod)
50 eqid 2821 . . . . . . . . . 10 (0g𝑆) = (0g𝑆)
5116, 50lmod0vcl 19662 . . . . . . . . 9 (𝑆 ∈ LMod → (0g𝑆) ∈ (Base‘𝑆))
5211, 49, 513syl 18 . . . . . . . 8 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (0g𝑆) ∈ (Base‘𝑆))
53 lmghm 19802 . . . . . . . . . . 11 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
5453ad2antlr 725 . . . . . . . . . 10 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
5550, 32ghmid 18363 . . . . . . . . . 10 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘(0g𝑆)) = (0g𝑇))
5654, 55syl 17 . . . . . . . . 9 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹‘(0g𝑆)) = (0g𝑇))
5735a1i 11 . . . . . . . . . 10 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 1 ∈ ℝ+)
58 blcntr 23022 . . . . . . . . . 10 ((((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))) ∈ (∞Met‘(Base‘𝑇)) ∧ (0g𝑇) ∈ (Base‘𝑇) ∧ 1 ∈ ℝ+) → (0g𝑇) ∈ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1))
5930, 34, 57, 58syl3anc 1367 . . . . . . . . 9 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (0g𝑇) ∈ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1))
6056, 59eqeltrd 2913 . . . . . . . 8 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹‘(0g𝑆)) ∈ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1))
6116, 27lmhmf 19805 . . . . . . . . . 10 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
6261ad2antlr 725 . . . . . . . . 9 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
63 ffn 6513 . . . . . . . . 9 (𝐹:(Base‘𝑆)⟶(Base‘𝑇) → 𝐹 Fn (Base‘𝑆))
64 elpreima 6827 . . . . . . . . 9 (𝐹 Fn (Base‘𝑆) → ((0g𝑆) ∈ (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1)) ↔ ((0g𝑆) ∈ (Base‘𝑆) ∧ (𝐹‘(0g𝑆)) ∈ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1))))
6562, 63, 643syl 18 . . . . . . . 8 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ((0g𝑆) ∈ (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1)) ↔ ((0g𝑆) ∈ (Base‘𝑆) ∧ (𝐹‘(0g𝑆)) ∈ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1))))
6652, 60, 65mpbir2and 711 . . . . . . 7 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (0g𝑆) ∈ (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1)))
67 eqid 2821 . . . . . . . 8 (MetOpen‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))) = (MetOpen‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))))
6867mopni2 23102 . . . . . . 7 ((((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))) ∈ (∞Met‘(Base‘𝑆)) ∧ (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1)) ∈ (MetOpen‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))) ∧ (0g𝑆) ∈ (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1))) → ∃𝑥 ∈ ℝ+ ((0g𝑆)(ball‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))))𝑥) ⊆ (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1)))
6919, 48, 66, 68syl3anc 1367 . . . . . 6 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ∃𝑥 ∈ ℝ+ ((0g𝑆)(ball‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))))𝑥) ⊆ (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1)))
70 simpl1 1187 . . . . . . . . . . . . . . . . . . . 20 (((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) → 𝑆 ∈ (NrmMod ∩ ℂMod))
7170elin1d 4174 . . . . . . . . . . . . . . . . . . 19 (((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) → 𝑆 ∈ NrmMod)
7271, 12syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) → 𝑆 ∈ NrmGrp)
7372adantr 483 . . . . . . . . . . . . . . . . 17 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝑆 ∈ NrmGrp)
7473ad2antrr 724 . . . . . . . . . . . . . . . 16 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑆 ∈ NrmGrp)
75 ngpgrp 23207 . . . . . . . . . . . . . . . 16 (𝑆 ∈ NrmGrp → 𝑆 ∈ Grp)
7674, 75syl 17 . . . . . . . . . . . . . . 15 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑆 ∈ Grp)
77 simpr 487 . . . . . . . . . . . . . . 15 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑦 ∈ (Base‘𝑆))
78 eqid 2821 . . . . . . . . . . . . . . . 16 (norm‘𝑆) = (norm‘𝑆)
79 eqid 2821 . . . . . . . . . . . . . . . 16 (dist‘𝑆) = (dist‘𝑆)
8078, 16, 50, 79, 17nmval2 23200 . . . . . . . . . . . . . . 15 ((𝑆 ∈ Grp ∧ 𝑦 ∈ (Base‘𝑆)) → ((norm‘𝑆)‘𝑦) = (𝑦((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))(0g𝑆)))
8176, 77, 80syl2anc 586 . . . . . . . . . . . . . 14 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → ((norm‘𝑆)‘𝑦) = (𝑦((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))(0g𝑆)))
8219ad2antrr 724 . . . . . . . . . . . . . . 15 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → ((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))) ∈ (∞Met‘(Base‘𝑆)))
8352ad2antrr 724 . . . . . . . . . . . . . . 15 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → (0g𝑆) ∈ (Base‘𝑆))
84 xmetsym 22956 . . . . . . . . . . . . . . 15 ((((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))) ∈ (∞Met‘(Base‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆) ∧ (0g𝑆) ∈ (Base‘𝑆)) → (𝑦((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))(0g𝑆)) = ((0g𝑆)((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦))
8582, 77, 83, 84syl3anc 1367 . . . . . . . . . . . . . 14 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑦((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))(0g𝑆)) = ((0g𝑆)((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦))
8681, 85eqtrd 2856 . . . . . . . . . . . . 13 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → ((norm‘𝑆)‘𝑦) = ((0g𝑆)((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦))
8786breq1d 5075 . . . . . . . . . . . 12 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → (((norm‘𝑆)‘𝑦) < 𝑥 ↔ ((0g𝑆)((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < 𝑥))
8887biimpd 231 . . . . . . . . . . 11 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → (((norm‘𝑆)‘𝑦) < 𝑥 → ((0g𝑆)((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < 𝑥))
8962ad2antrr 724 . . . . . . . . . . . . 13 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
90 elpreima 6827 . . . . . . . . . . . . 13 (𝐹 Fn (Base‘𝑆) → (𝑦 ∈ (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1)) ↔ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) ∈ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1))))
9189, 63, 903syl 18 . . . . . . . . . . . 12 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑦 ∈ (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1)) ↔ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) ∈ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1))))
9230ad2antrr 724 . . . . . . . . . . . . . . 15 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → ((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))) ∈ (∞Met‘(Base‘𝑇)))
9334ad2antrr 724 . . . . . . . . . . . . . . 15 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → (0g𝑇) ∈ (Base‘𝑇))
9435, 36mp1i 13 . . . . . . . . . . . . . . 15 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → 1 ∈ ℝ*)
95 elbl 22997 . . . . . . . . . . . . . . 15 ((((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))) ∈ (∞Met‘(Base‘𝑇)) ∧ (0g𝑇) ∈ (Base‘𝑇) ∧ 1 ∈ ℝ*) → ((𝐹𝑦) ∈ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1) ↔ ((𝐹𝑦) ∈ (Base‘𝑇) ∧ ((0g𝑇)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(𝐹𝑦)) < 1)))
9692, 93, 94, 95syl3anc 1367 . . . . . . . . . . . . . 14 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝐹𝑦) ∈ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1) ↔ ((𝐹𝑦) ∈ (Base‘𝑇) ∧ ((0g𝑇)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(𝐹𝑦)) < 1)))
97 simpl2 1188 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) → 𝑇 ∈ (NrmMod ∩ ℂMod))
9897elin1d 4174 . . . . . . . . . . . . . . . . . . . . 21 (((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) → 𝑇 ∈ NrmMod)
9998, 23syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) → 𝑇 ∈ NrmGrp)
10099adantr 483 . . . . . . . . . . . . . . . . . . 19 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝑇 ∈ NrmGrp)
101100ad2antrr 724 . . . . . . . . . . . . . . . . . 18 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑇 ∈ NrmGrp)
102 simplr 767 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 ∈ (𝑆 LMHom 𝑇))
103102adantr 483 . . . . . . . . . . . . . . . . . . . 20 (((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) → 𝐹 ∈ (𝑆 LMHom 𝑇))
104103, 61syl 17 . . . . . . . . . . . . . . . . . . 19 (((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
105104ffvelrnda 6850 . . . . . . . . . . . . . . . . . 18 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹𝑦) ∈ (Base‘𝑇))
106 eqid 2821 . . . . . . . . . . . . . . . . . . 19 (norm‘𝑇) = (norm‘𝑇)
10727, 106nmcl 23224 . . . . . . . . . . . . . . . . . 18 ((𝑇 ∈ NrmGrp ∧ (𝐹𝑦) ∈ (Base‘𝑇)) → ((norm‘𝑇)‘(𝐹𝑦)) ∈ ℝ)
108101, 105, 107syl2anc 586 . . . . . . . . . . . . . . . . 17 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → ((norm‘𝑇)‘(𝐹𝑦)) ∈ ℝ)
109 1re 10640 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ
110 ltle 10728 . . . . . . . . . . . . . . . . 17 ((((norm‘𝑇)‘(𝐹𝑦)) ∈ ℝ ∧ 1 ∈ ℝ) → (((norm‘𝑇)‘(𝐹𝑦)) < 1 → ((norm‘𝑇)‘(𝐹𝑦)) ≤ 1))
111108, 109, 110sylancl 588 . . . . . . . . . . . . . . . 16 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → (((norm‘𝑇)‘(𝐹𝑦)) < 1 → ((norm‘𝑇)‘(𝐹𝑦)) ≤ 1))
112 ngpgrp 23207 . . . . . . . . . . . . . . . . . . . 20 (𝑇 ∈ NrmGrp → 𝑇 ∈ Grp)
113101, 112syl 17 . . . . . . . . . . . . . . . . . . 19 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑇 ∈ Grp)
114 eqid 2821 . . . . . . . . . . . . . . . . . . . 20 (dist‘𝑇) = (dist‘𝑇)
115106, 27, 32, 114, 28nmval2 23200 . . . . . . . . . . . . . . . . . . 19 ((𝑇 ∈ Grp ∧ (𝐹𝑦) ∈ (Base‘𝑇)) → ((norm‘𝑇)‘(𝐹𝑦)) = ((𝐹𝑦)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(0g𝑇)))
116113, 105, 115syl2anc 586 . . . . . . . . . . . . . . . . . 18 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → ((norm‘𝑇)‘(𝐹𝑦)) = ((𝐹𝑦)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(0g𝑇)))
117 xmetsym 22956 . . . . . . . . . . . . . . . . . . 19 ((((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))) ∈ (∞Met‘(Base‘𝑇)) ∧ (𝐹𝑦) ∈ (Base‘𝑇) ∧ (0g𝑇) ∈ (Base‘𝑇)) → ((𝐹𝑦)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(0g𝑇)) = ((0g𝑇)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(𝐹𝑦)))
11892, 105, 93, 117syl3anc 1367 . . . . . . . . . . . . . . . . . 18 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝐹𝑦)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(0g𝑇)) = ((0g𝑇)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(𝐹𝑦)))
119116, 118eqtrd 2856 . . . . . . . . . . . . . . . . 17 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → ((norm‘𝑇)‘(𝐹𝑦)) = ((0g𝑇)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(𝐹𝑦)))
120119breq1d 5075 . . . . . . . . . . . . . . . 16 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → (((norm‘𝑇)‘(𝐹𝑦)) < 1 ↔ ((0g𝑇)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(𝐹𝑦)) < 1))
121 1red 10641 . . . . . . . . . . . . . . . . 17 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → 1 ∈ ℝ)
122 simplr 767 . . . . . . . . . . . . . . . . 17 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑥 ∈ ℝ+)
123108, 121, 122lediv1d 12476 . . . . . . . . . . . . . . . 16 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → (((norm‘𝑇)‘(𝐹𝑦)) ≤ 1 ↔ (((norm‘𝑇)‘(𝐹𝑦)) / 𝑥) ≤ (1 / 𝑥)))
124111, 120, 1233imtr3d 295 . . . . . . . . . . . . . . 15 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → (((0g𝑇)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(𝐹𝑦)) < 1 → (((norm‘𝑇)‘(𝐹𝑦)) / 𝑥) ≤ (1 / 𝑥)))
125124adantld 493 . . . . . . . . . . . . . 14 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → (((𝐹𝑦) ∈ (Base‘𝑇) ∧ ((0g𝑇)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(𝐹𝑦)) < 1) → (((norm‘𝑇)‘(𝐹𝑦)) / 𝑥) ≤ (1 / 𝑥)))
12696, 125sylbid 242 . . . . . . . . . . . . 13 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝐹𝑦) ∈ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1) → (((norm‘𝑇)‘(𝐹𝑦)) / 𝑥) ≤ (1 / 𝑥)))
127126adantld 493 . . . . . . . . . . . 12 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) ∈ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1)) → (((norm‘𝑇)‘(𝐹𝑦)) / 𝑥) ≤ (1 / 𝑥)))
12891, 127sylbid 242 . . . . . . . . . . 11 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑦 ∈ (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1)) → (((norm‘𝑇)‘(𝐹𝑦)) / 𝑥) ≤ (1 / 𝑥)))
12988, 128imim12d 81 . . . . . . . . . 10 ((((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ (Base‘𝑆)) → ((((0g𝑆)((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < 𝑥𝑦 ∈ (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1))) → (((norm‘𝑆)‘𝑦) < 𝑥 → (((norm‘𝑇)‘(𝐹𝑦)) / 𝑥) ≤ (1 / 𝑥))))
130129ralimdva 3177 . . . . . . . . 9 (((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) → (∀𝑦 ∈ (Base‘𝑆)(((0g𝑆)((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < 𝑥𝑦 ∈ (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1))) → ∀𝑦 ∈ (Base‘𝑆)(((norm‘𝑆)‘𝑦) < 𝑥 → (((norm‘𝑇)‘(𝐹𝑦)) / 𝑥) ≤ (1 / 𝑥))))
131 rpxr 12397 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+𝑥 ∈ ℝ*)
132 blval 22995 . . . . . . . . . . . 12 ((((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))) ∈ (∞Met‘(Base‘𝑆)) ∧ (0g𝑆) ∈ (Base‘𝑆) ∧ 𝑥 ∈ ℝ*) → ((0g𝑆)(ball‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))))𝑥) = {𝑦 ∈ (Base‘𝑆) ∣ ((0g𝑆)((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < 𝑥})
13319, 52, 131, 132syl2an3an 1418 . . . . . . . . . . 11 (((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) → ((0g𝑆)(ball‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))))𝑥) = {𝑦 ∈ (Base‘𝑆) ∣ ((0g𝑆)((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < 𝑥})
134133sseq1d 3997 . . . . . . . . . 10 (((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) → (((0g𝑆)(ball‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))))𝑥) ⊆ (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1)) ↔ {𝑦 ∈ (Base‘𝑆) ∣ ((0g𝑆)((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < 𝑥} ⊆ (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1))))
135 rabss 4047 . . . . . . . . . 10 ({𝑦 ∈ (Base‘𝑆) ∣ ((0g𝑆)((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < 𝑥} ⊆ (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1)) ↔ ∀𝑦 ∈ (Base‘𝑆)(((0g𝑆)((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < 𝑥𝑦 ∈ (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1))))
136134, 135syl6bb 289 . . . . . . . . 9 (((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) → (((0g𝑆)(ball‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))))𝑥) ⊆ (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1)) ↔ ∀𝑦 ∈ (Base‘𝑆)(((0g𝑆)((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < 𝑥𝑦 ∈ (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1)))))
137 eqid 2821 . . . . . . . . . 10 (𝑆 normOp 𝑇) = (𝑆 normOp 𝑇)
138 nmhmcn.g . . . . . . . . . 10 𝐺 = (Scalar‘𝑆)
139 nmhmcn.b . . . . . . . . . 10 𝐵 = (Base‘𝐺)
14010adantr 483 . . . . . . . . . 10 (((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) → 𝑆 ∈ (NrmMod ∩ ℂMod))
14121adantr 483 . . . . . . . . . 10 (((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) → 𝑇 ∈ (NrmMod ∩ ℂMod))
142 rpreccl 12414 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → (1 / 𝑥) ∈ ℝ+)
143142adantl 484 . . . . . . . . . . 11 (((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℝ+)
144143rpxrd 12431 . . . . . . . . . 10 (((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℝ*)
145 simpr 487 . . . . . . . . . 10 (((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
146 simpl3 1189 . . . . . . . . . . 11 (((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) → ℚ ⊆ 𝐵)
147146ad2antrr 724 . . . . . . . . . 10 (((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) → ℚ ⊆ 𝐵)
148137, 16, 78, 106, 138, 139, 140, 141, 103, 144, 145, 147nmoleub2b 23721 . . . . . . . . 9 (((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) → (((𝑆 normOp 𝑇)‘𝐹) ≤ (1 / 𝑥) ↔ ∀𝑦 ∈ (Base‘𝑆)(((norm‘𝑆)‘𝑦) < 𝑥 → (((norm‘𝑇)‘(𝐹𝑦)) / 𝑥) ≤ (1 / 𝑥))))
149130, 136, 1483imtr4d 296 . . . . . . . 8 (((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) → (((0g𝑆)(ball‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))))𝑥) ⊆ (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1)) → ((𝑆 normOp 𝑇)‘𝐹) ≤ (1 / 𝑥)))
15073, 100, 543jca 1124 . . . . . . . . 9 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)))
151142rpred 12430 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (1 / 𝑥) ∈ ℝ)
152137bddnghm 23334 . . . . . . . . . 10 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ ((1 / 𝑥) ∈ ℝ ∧ ((𝑆 normOp 𝑇)‘𝐹) ≤ (1 / 𝑥))) → 𝐹 ∈ (𝑆 NGHom 𝑇))
153152expr 459 . . . . . . . . 9 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (1 / 𝑥) ∈ ℝ) → (((𝑆 normOp 𝑇)‘𝐹) ≤ (1 / 𝑥) → 𝐹 ∈ (𝑆 NGHom 𝑇)))
154150, 151, 153syl2an 597 . . . . . . . 8 (((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) → (((𝑆 normOp 𝑇)‘𝐹) ≤ (1 / 𝑥) → 𝐹 ∈ (𝑆 NGHom 𝑇)))
155149, 154syld 47 . . . . . . 7 (((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ℝ+) → (((0g𝑆)(ball‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))))𝑥) ⊆ (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1)) → 𝐹 ∈ (𝑆 NGHom 𝑇)))
156155rexlimdva 3284 . . . . . 6 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (∃𝑥 ∈ ℝ+ ((0g𝑆)(ball‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))))𝑥) ⊆ (𝐹 “ ((0g𝑇)(ball‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))1)) → 𝐹 ∈ (𝑆 NGHom 𝑇)))
15769, 156mpd 15 . . . . 5 ((((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 ∈ (𝑆 NGHom 𝑇))
158157ex 415 . . . 4 (((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) → (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹 ∈ (𝑆 NGHom 𝑇)))
1599, 158impbid2 228 . . 3 (((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) → (𝐹 ∈ (𝑆 NGHom 𝑇) ↔ 𝐹 ∈ (𝐽 Cn 𝐾)))
160159pm5.32da 581 . 2 ((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) → ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹 ∈ (𝑆 NGHom 𝑇)) ↔ (𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹 ∈ (𝐽 Cn 𝐾))))
1616, 160bitrd 281 1 ((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) → (𝐹 ∈ (𝑆 NMHom 𝑇) ↔ (𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹 ∈ (𝐽 Cn 𝐾))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wral 3138  wrex 3139  {crab 3142  cin 3934  wss 3935   class class class wbr 5065   × cxp 5552  ccnv 5553  cres 5556  cima 5557   Fn wfn 6349  wf 6350  cfv 6354  (class class class)co 7155  cr 10535  1c1 10537  *cxr 10673   < clt 10674  cle 10675   / cdiv 11296  cq 12347  +crp 12388  Basecbs 16482  Scalarcsca 16567  distcds 16573  TopOpenctopn 16694  0gc0g 16712  Grpcgrp 18102   GrpHom cghm 18354  LModclmod 19633   LMHom clmhm 19790  ∞Metcxmet 20529  ballcbl 20531  MetOpencmopn 20534   Cn ccn 21831  ∞MetSpcxms 22926  MetSpcms 22927  normcnm 23185  NrmGrpcngp 23186  NrmModcnlm 23189   normOp cnmo 23313   NGHom cnghm 23314   NMHom cnmhm 23315  ℂModcclm 23665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614  ax-addf 10615  ax-mulf 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-er 8288  df-map 8407  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-sup 8905  df-inf 8906  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-z 11981  df-dec 12098  df-uz 12243  df-q 12348  df-rp 12389  df-xneg 12506  df-xadd 12507  df-xmul 12508  df-ico 12743  df-fz 12892  df-seq 13369  df-exp 13429  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-mulr 16578  df-starv 16579  df-tset 16583  df-ple 16584  df-ds 16586  df-unif 16587  df-0g 16714  df-topgen 16716  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-grp 18105  df-minusg 18106  df-sbg 18107  df-subg 18275  df-ghm 18355  df-cmn 18907  df-mgp 19239  df-ring 19298  df-cring 19299  df-subrg 19532  df-lmod 19635  df-lmhm 19793  df-psmet 20536  df-xmet 20537  df-met 20538  df-bl 20539  df-mopn 20540  df-cnfld 20545  df-top 21501  df-topon 21518  df-topsp 21540  df-bases 21553  df-cn 21834  df-cnp 21835  df-xms 22929  df-ms 22930  df-nm 23191  df-ngp 23192  df-nlm 23195  df-nmo 23316  df-nghm 23317  df-nmhm 23318  df-clm 23666
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator