MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmlno0 Structured version   Visualization version   GIF version

Theorem nmlno0 27499
Description: The norm of a linear operator is zero iff the operator is zero. (Contributed by NM, 24-Nov-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmlno0.3 𝑁 = (𝑈 normOpOLD 𝑊)
nmlno0.0 𝑍 = (𝑈 0op 𝑊)
nmlno0.7 𝐿 = (𝑈 LnOp 𝑊)
Assertion
Ref Expression
nmlno0 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → ((𝑁𝑇) = 0 ↔ 𝑇 = 𝑍))

Proof of Theorem nmlno0
StepHypRef Expression
1 nmlno0.7 . . . . . 6 𝐿 = (𝑈 LnOp 𝑊)
2 oveq1 6611 . . . . . 6 (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝑈 LnOp 𝑊) = (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp 𝑊))
31, 2syl5eq 2667 . . . . 5 (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → 𝐿 = (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp 𝑊))
43eleq2d 2684 . . . 4 (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝑇𝐿𝑇 ∈ (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp 𝑊)))
5 nmlno0.3 . . . . . . . 8 𝑁 = (𝑈 normOpOLD 𝑊)
6 oveq1 6611 . . . . . . . 8 (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝑈 normOpOLD 𝑊) = (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊))
75, 6syl5eq 2667 . . . . . . 7 (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → 𝑁 = (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊))
87fveq1d 6150 . . . . . 6 (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝑁𝑇) = ((if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑇))
98eqeq1d 2623 . . . . 5 (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → ((𝑁𝑇) = 0 ↔ ((if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑇) = 0))
10 nmlno0.0 . . . . . . 7 𝑍 = (𝑈 0op 𝑊)
11 oveq1 6611 . . . . . . 7 (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝑈 0op 𝑊) = (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) 0op 𝑊))
1210, 11syl5eq 2667 . . . . . 6 (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → 𝑍 = (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) 0op 𝑊))
1312eqeq2d 2631 . . . . 5 (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝑇 = 𝑍𝑇 = (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) 0op 𝑊)))
149, 13bibi12d 335 . . . 4 (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (((𝑁𝑇) = 0 ↔ 𝑇 = 𝑍) ↔ (((if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑇) = 0 ↔ 𝑇 = (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) 0op 𝑊))))
154, 14imbi12d 334 . . 3 (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → ((𝑇𝐿 → ((𝑁𝑇) = 0 ↔ 𝑇 = 𝑍)) ↔ (𝑇 ∈ (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp 𝑊) → (((if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑇) = 0 ↔ 𝑇 = (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) 0op 𝑊)))))
16 oveq2 6612 . . . . 5 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp 𝑊) = (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)))
1716eleq2d 2684 . . . 4 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → (𝑇 ∈ (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp 𝑊) ↔ 𝑇 ∈ (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))))
18 oveq2 6612 . . . . . . 7 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊) = (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)))
1918fveq1d 6150 . . . . . 6 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → ((if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑇) = ((if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘𝑇))
2019eqeq1d 2623 . . . . 5 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → (((if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑇) = 0 ↔ ((if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘𝑇) = 0))
21 oveq2 6612 . . . . . 6 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) 0op 𝑊) = (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) 0op if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)))
2221eqeq2d 2631 . . . . 5 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → (𝑇 = (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) 0op 𝑊) ↔ 𝑇 = (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) 0op if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))))
2320, 22bibi12d 335 . . . 4 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → ((((if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑇) = 0 ↔ 𝑇 = (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) 0op 𝑊)) ↔ (((if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘𝑇) = 0 ↔ 𝑇 = (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) 0op if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)))))
2417, 23imbi12d 334 . . 3 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → ((𝑇 ∈ (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp 𝑊) → (((if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑇) = 0 ↔ 𝑇 = (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) 0op 𝑊))) ↔ (𝑇 ∈ (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)) → (((if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘𝑇) = 0 ↔ 𝑇 = (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) 0op if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))))))
25 eqid 2621 . . . 4 (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)) = (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))
26 eqid 2621 . . . 4 (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) 0op if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)) = (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) 0op if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))
27 eqid 2621 . . . 4 (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)) = (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))
28 elimnvu 27388 . . . 4 if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) ∈ NrmCVec
29 elimnvu 27388 . . . 4 if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) ∈ NrmCVec
3025, 26, 27, 28, 29nmlno0i 27498 . . 3 (𝑇 ∈ (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)) → (((if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘𝑇) = 0 ↔ 𝑇 = (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) 0op if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))))
3115, 24, 30dedth2h 4112 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑇𝐿 → ((𝑁𝑇) = 0 ↔ 𝑇 = 𝑍)))
32313impia 1258 1 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → ((𝑁𝑇) = 0 ↔ 𝑇 = 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  w3a 1036   = wceq 1480  wcel 1987  ifcif 4058  cop 4154  cfv 5847  (class class class)co 6604  0cc0 9880   + caddc 9883   · cmul 9885  abscabs 13908  NrmCVeccnv 27288   LnOp clno 27444   normOpOLD cnmoo 27445   0op c0o 27447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-addf 9959  ax-mulf 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-sup 8292  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-seq 12742  df-exp 12801  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-grpo 27196  df-gid 27197  df-ginv 27198  df-ablo 27248  df-vc 27263  df-nv 27296  df-va 27299  df-ba 27300  df-sm 27301  df-0v 27302  df-nmcv 27304  df-lno 27448  df-nmoo 27449  df-0o 27451
This theorem is referenced by:  nmlnogt0  27501
  Copyright terms: Public domain W3C validator