MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmlno0 Structured version   Visualization version   GIF version

Theorem nmlno0 28566
Description: The norm of a linear operator is zero iff the operator is zero. (Contributed by NM, 24-Nov-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmlno0.3 𝑁 = (𝑈 normOpOLD 𝑊)
nmlno0.0 𝑍 = (𝑈 0op 𝑊)
nmlno0.7 𝐿 = (𝑈 LnOp 𝑊)
Assertion
Ref Expression
nmlno0 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → ((𝑁𝑇) = 0 ↔ 𝑇 = 𝑍))

Proof of Theorem nmlno0
StepHypRef Expression
1 nmlno0.7 . . . . . 6 𝐿 = (𝑈 LnOp 𝑊)
2 oveq1 7157 . . . . . 6 (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝑈 LnOp 𝑊) = (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp 𝑊))
31, 2syl5eq 2868 . . . . 5 (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → 𝐿 = (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp 𝑊))
43eleq2d 2898 . . . 4 (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝑇𝐿𝑇 ∈ (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp 𝑊)))
5 nmlno0.3 . . . . . . . 8 𝑁 = (𝑈 normOpOLD 𝑊)
6 oveq1 7157 . . . . . . . 8 (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝑈 normOpOLD 𝑊) = (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊))
75, 6syl5eq 2868 . . . . . . 7 (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → 𝑁 = (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊))
87fveq1d 6666 . . . . . 6 (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝑁𝑇) = ((if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑇))
98eqeq1d 2823 . . . . 5 (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → ((𝑁𝑇) = 0 ↔ ((if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑇) = 0))
10 nmlno0.0 . . . . . . 7 𝑍 = (𝑈 0op 𝑊)
11 oveq1 7157 . . . . . . 7 (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝑈 0op 𝑊) = (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) 0op 𝑊))
1210, 11syl5eq 2868 . . . . . 6 (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → 𝑍 = (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) 0op 𝑊))
1312eqeq2d 2832 . . . . 5 (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝑇 = 𝑍𝑇 = (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) 0op 𝑊)))
149, 13bibi12d 348 . . . 4 (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (((𝑁𝑇) = 0 ↔ 𝑇 = 𝑍) ↔ (((if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑇) = 0 ↔ 𝑇 = (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) 0op 𝑊))))
154, 14imbi12d 347 . . 3 (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → ((𝑇𝐿 → ((𝑁𝑇) = 0 ↔ 𝑇 = 𝑍)) ↔ (𝑇 ∈ (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp 𝑊) → (((if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑇) = 0 ↔ 𝑇 = (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) 0op 𝑊)))))
16 oveq2 7158 . . . . 5 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp 𝑊) = (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)))
1716eleq2d 2898 . . . 4 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → (𝑇 ∈ (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp 𝑊) ↔ 𝑇 ∈ (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))))
18 oveq2 7158 . . . . . . 7 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊) = (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)))
1918fveq1d 6666 . . . . . 6 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → ((if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑇) = ((if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘𝑇))
2019eqeq1d 2823 . . . . 5 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → (((if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑇) = 0 ↔ ((if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘𝑇) = 0))
21 oveq2 7158 . . . . . 6 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) 0op 𝑊) = (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) 0op if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)))
2221eqeq2d 2832 . . . . 5 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → (𝑇 = (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) 0op 𝑊) ↔ 𝑇 = (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) 0op if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))))
2320, 22bibi12d 348 . . . 4 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → ((((if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑇) = 0 ↔ 𝑇 = (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) 0op 𝑊)) ↔ (((if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘𝑇) = 0 ↔ 𝑇 = (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) 0op if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)))))
2417, 23imbi12d 347 . . 3 (𝑊 = if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) → ((𝑇 ∈ (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp 𝑊) → (((if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD 𝑊)‘𝑇) = 0 ↔ 𝑇 = (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) 0op 𝑊))) ↔ (𝑇 ∈ (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)) → (((if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘𝑇) = 0 ↔ 𝑇 = (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) 0op if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))))))
25 eqid 2821 . . . 4 (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)) = (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))
26 eqid 2821 . . . 4 (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) 0op if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)) = (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) 0op if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))
27 eqid 2821 . . . 4 (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)) = (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))
28 elimnvu 28455 . . . 4 if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) ∈ NrmCVec
29 elimnvu 28455 . . . 4 if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩) ∈ NrmCVec
3025, 26, 27, 28, 29nmlno0i 28565 . . 3 (𝑇 ∈ (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩)) → (((if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) normOpOLD if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))‘𝑇) = 0 ↔ 𝑇 = (if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) 0op if(𝑊 ∈ NrmCVec, 𝑊, ⟨⟨ + , · ⟩, abs⟩))))
3115, 24, 30dedth2h 4523 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑇𝐿 → ((𝑁𝑇) = 0 ↔ 𝑇 = 𝑍)))
32313impia 1113 1 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → ((𝑁𝑇) = 0 ↔ 𝑇 = 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  w3a 1083   = wceq 1533  wcel 2110  ifcif 4466  cop 4566  cfv 6349  (class class class)co 7150  0cc0 10531   + caddc 10534   · cmul 10536  abscabs 14587  NrmCVeccnv 28355   LnOp clno 28511   normOpOLD cnmoo 28512   0op c0o 28514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-seq 13364  df-exp 13424  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-grpo 28264  df-gid 28265  df-ginv 28266  df-ablo 28316  df-vc 28330  df-nv 28363  df-va 28366  df-ba 28367  df-sm 28368  df-0v 28369  df-nmcv 28371  df-lno 28515  df-nmoo 28516  df-0o 28518
This theorem is referenced by:  nmlnogt0  28568
  Copyright terms: Public domain W3C validator