Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmlnogt0 Structured version   Visualization version   GIF version

Theorem nmlnogt0 27522
 Description: The norm of a nonzero linear operator is positive. (Contributed by NM, 10-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmlnogt0.3 𝑁 = (𝑈 normOpOLD 𝑊)
nmlnogt0.0 𝑍 = (𝑈 0op 𝑊)
nmlnogt0.7 𝐿 = (𝑈 LnOp 𝑊)
Assertion
Ref Expression
nmlnogt0 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (𝑇𝑍 ↔ 0 < (𝑁𝑇)))

Proof of Theorem nmlnogt0
StepHypRef Expression
1 nmlnogt0.3 . . . 4 𝑁 = (𝑈 normOpOLD 𝑊)
2 nmlnogt0.0 . . . 4 𝑍 = (𝑈 0op 𝑊)
3 nmlnogt0.7 . . . 4 𝐿 = (𝑈 LnOp 𝑊)
41, 2, 3nmlno0 27520 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → ((𝑁𝑇) = 0 ↔ 𝑇 = 𝑍))
54necon3bid 2834 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → ((𝑁𝑇) ≠ 0 ↔ 𝑇𝑍))
6 eqid 2621 . . . 4 (BaseSet‘𝑈) = (BaseSet‘𝑈)
7 eqid 2621 . . . 4 (BaseSet‘𝑊) = (BaseSet‘𝑊)
86, 7, 3lnof 27480 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑇:(BaseSet‘𝑈)⟶(BaseSet‘𝑊))
96, 7, 1nmoxr 27491 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:(BaseSet‘𝑈)⟶(BaseSet‘𝑊)) → (𝑁𝑇) ∈ ℝ*)
106, 7, 1nmooge0 27492 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:(BaseSet‘𝑈)⟶(BaseSet‘𝑊)) → 0 ≤ (𝑁𝑇))
11 0xr 10038 . . . . . . 7 0 ∈ ℝ*
12 xrlttri2 11927 . . . . . . 7 (((𝑁𝑇) ∈ ℝ* ∧ 0 ∈ ℝ*) → ((𝑁𝑇) ≠ 0 ↔ ((𝑁𝑇) < 0 ∨ 0 < (𝑁𝑇))))
1311, 12mpan2 706 . . . . . 6 ((𝑁𝑇) ∈ ℝ* → ((𝑁𝑇) ≠ 0 ↔ ((𝑁𝑇) < 0 ∨ 0 < (𝑁𝑇))))
1413adantr 481 . . . . 5 (((𝑁𝑇) ∈ ℝ* ∧ 0 ≤ (𝑁𝑇)) → ((𝑁𝑇) ≠ 0 ↔ ((𝑁𝑇) < 0 ∨ 0 < (𝑁𝑇))))
15 xrlenlt 10055 . . . . . . . 8 ((0 ∈ ℝ* ∧ (𝑁𝑇) ∈ ℝ*) → (0 ≤ (𝑁𝑇) ↔ ¬ (𝑁𝑇) < 0))
1611, 15mpan 705 . . . . . . 7 ((𝑁𝑇) ∈ ℝ* → (0 ≤ (𝑁𝑇) ↔ ¬ (𝑁𝑇) < 0))
1716biimpa 501 . . . . . 6 (((𝑁𝑇) ∈ ℝ* ∧ 0 ≤ (𝑁𝑇)) → ¬ (𝑁𝑇) < 0)
18 biorf 420 . . . . . 6 (¬ (𝑁𝑇) < 0 → (0 < (𝑁𝑇) ↔ ((𝑁𝑇) < 0 ∨ 0 < (𝑁𝑇))))
1917, 18syl 17 . . . . 5 (((𝑁𝑇) ∈ ℝ* ∧ 0 ≤ (𝑁𝑇)) → (0 < (𝑁𝑇) ↔ ((𝑁𝑇) < 0 ∨ 0 < (𝑁𝑇))))
2014, 19bitr4d 271 . . . 4 (((𝑁𝑇) ∈ ℝ* ∧ 0 ≤ (𝑁𝑇)) → ((𝑁𝑇) ≠ 0 ↔ 0 < (𝑁𝑇)))
219, 10, 20syl2anc 692 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:(BaseSet‘𝑈)⟶(BaseSet‘𝑊)) → ((𝑁𝑇) ≠ 0 ↔ 0 < (𝑁𝑇)))
228, 21syld3an3 1368 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → ((𝑁𝑇) ≠ 0 ↔ 0 < (𝑁𝑇)))
235, 22bitr3d 270 1 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (𝑇𝑍 ↔ 0 < (𝑁𝑇)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∨ wo 383   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987   ≠ wne 2790   class class class wbr 4618  ⟶wf 5848  ‘cfv 5852  (class class class)co 6610  0cc0 9888  ℝ*cxr 10025   < clt 10026   ≤ cle 10027  NrmCVeccnv 27309  BaseSetcba 27311   LnOp clno 27465   normOpOLD cnmoo 27466   0op c0o 27468 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966  ax-addf 9967  ax-mulf 9968 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-er 7694  df-map 7811  df-en 7908  df-dom 7909  df-sdom 7910  df-sup 8300  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-2 11031  df-3 11032  df-n0 11245  df-z 11330  df-uz 11640  df-rp 11785  df-seq 12750  df-exp 12809  df-cj 13781  df-re 13782  df-im 13783  df-sqrt 13917  df-abs 13918  df-grpo 27217  df-gid 27218  df-ginv 27219  df-ablo 27269  df-vc 27284  df-nv 27317  df-va 27320  df-ba 27321  df-sm 27322  df-0v 27323  df-nmcv 27325  df-lno 27469  df-nmoo 27470  df-0o 27472 This theorem is referenced by:  blocni  27530
 Copyright terms: Public domain W3C validator