MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmlnoubi Structured version   Visualization version   GIF version

Theorem nmlnoubi 28567
Description: An upper bound for the operator norm of a linear operator, using only the properties of nonzero arguments. (Contributed by NM, 1-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmlnoubi.1 𝑋 = (BaseSet‘𝑈)
nmlnoubi.z 𝑍 = (0vec𝑈)
nmlnoubi.k 𝐾 = (normCV𝑈)
nmlnoubi.m 𝑀 = (normCV𝑊)
nmlnoubi.3 𝑁 = (𝑈 normOpOLD 𝑊)
nmlnoubi.7 𝐿 = (𝑈 LnOp 𝑊)
nmlnoubi.u 𝑈 ∈ NrmCVec
nmlnoubi.w 𝑊 ∈ NrmCVec
Assertion
Ref Expression
nmlnoubi ((𝑇𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ∀𝑥𝑋 (𝑥𝑍 → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥)))) → (𝑁𝑇) ≤ 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐾   𝑥,𝐿   𝑥,𝑀   𝑥,𝑇   𝑥,𝑈   𝑥,𝑊   𝑥,𝑋
Allowed substitution hints:   𝑁(𝑥)   𝑍(𝑥)

Proof of Theorem nmlnoubi
StepHypRef Expression
1 2fveq3 6669 . . . . . . 7 (𝑥 = 𝑍 → (𝑀‘(𝑇𝑥)) = (𝑀‘(𝑇𝑍)))
2 fveq2 6664 . . . . . . . 8 (𝑥 = 𝑍 → (𝐾𝑥) = (𝐾𝑍))
32oveq2d 7166 . . . . . . 7 (𝑥 = 𝑍 → (𝐴 · (𝐾𝑥)) = (𝐴 · (𝐾𝑍)))
41, 3breq12d 5071 . . . . . 6 (𝑥 = 𝑍 → ((𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥)) ↔ (𝑀‘(𝑇𝑍)) ≤ (𝐴 · (𝐾𝑍))))
5 id 22 . . . . . . . 8 ((𝑥𝑍 → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥))) → (𝑥𝑍 → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥))))
65imp 409 . . . . . . 7 (((𝑥𝑍 → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥))) ∧ 𝑥𝑍) → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥)))
76adantll 712 . . . . . 6 ((((𝑇𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ (𝑥𝑍 → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥)))) ∧ 𝑥𝑍) → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥)))
8 0le0 11732 . . . . . . . 8 0 ≤ 0
9 nmlnoubi.u . . . . . . . . . . . . 13 𝑈 ∈ NrmCVec
10 nmlnoubi.w . . . . . . . . . . . . 13 𝑊 ∈ NrmCVec
11 nmlnoubi.1 . . . . . . . . . . . . . 14 𝑋 = (BaseSet‘𝑈)
12 eqid 2821 . . . . . . . . . . . . . 14 (BaseSet‘𝑊) = (BaseSet‘𝑊)
13 nmlnoubi.z . . . . . . . . . . . . . 14 𝑍 = (0vec𝑈)
14 eqid 2821 . . . . . . . . . . . . . 14 (0vec𝑊) = (0vec𝑊)
15 nmlnoubi.7 . . . . . . . . . . . . . 14 𝐿 = (𝑈 LnOp 𝑊)
1611, 12, 13, 14, 15lno0 28527 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (𝑇𝑍) = (0vec𝑊))
179, 10, 16mp3an12 1447 . . . . . . . . . . . 12 (𝑇𝐿 → (𝑇𝑍) = (0vec𝑊))
1817fveq2d 6668 . . . . . . . . . . 11 (𝑇𝐿 → (𝑀‘(𝑇𝑍)) = (𝑀‘(0vec𝑊)))
19 nmlnoubi.m . . . . . . . . . . . . 13 𝑀 = (normCV𝑊)
2014, 19nvz0 28439 . . . . . . . . . . . 12 (𝑊 ∈ NrmCVec → (𝑀‘(0vec𝑊)) = 0)
2110, 20ax-mp 5 . . . . . . . . . . 11 (𝑀‘(0vec𝑊)) = 0
2218, 21syl6eq 2872 . . . . . . . . . 10 (𝑇𝐿 → (𝑀‘(𝑇𝑍)) = 0)
2322adantr 483 . . . . . . . . 9 ((𝑇𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → (𝑀‘(𝑇𝑍)) = 0)
24 nmlnoubi.k . . . . . . . . . . . . . 14 𝐾 = (normCV𝑈)
2513, 24nvz0 28439 . . . . . . . . . . . . 13 (𝑈 ∈ NrmCVec → (𝐾𝑍) = 0)
269, 25ax-mp 5 . . . . . . . . . . . 12 (𝐾𝑍) = 0
2726oveq2i 7161 . . . . . . . . . . 11 (𝐴 · (𝐾𝑍)) = (𝐴 · 0)
28 recn 10621 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2928mul01d 10833 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (𝐴 · 0) = 0)
3027, 29syl5eq 2868 . . . . . . . . . 10 (𝐴 ∈ ℝ → (𝐴 · (𝐾𝑍)) = 0)
3130ad2antrl 726 . . . . . . . . 9 ((𝑇𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → (𝐴 · (𝐾𝑍)) = 0)
3223, 31breq12d 5071 . . . . . . . 8 ((𝑇𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → ((𝑀‘(𝑇𝑍)) ≤ (𝐴 · (𝐾𝑍)) ↔ 0 ≤ 0))
338, 32mpbiri 260 . . . . . . 7 ((𝑇𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → (𝑀‘(𝑇𝑍)) ≤ (𝐴 · (𝐾𝑍)))
3433adantr 483 . . . . . 6 (((𝑇𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ (𝑥𝑍 → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥)))) → (𝑀‘(𝑇𝑍)) ≤ (𝐴 · (𝐾𝑍)))
354, 7, 34pm2.61ne 3102 . . . . 5 (((𝑇𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ (𝑥𝑍 → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥)))) → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥)))
3635ex 415 . . . 4 ((𝑇𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → ((𝑥𝑍 → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥))) → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥))))
3736ralimdv 3178 . . 3 ((𝑇𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → (∀𝑥𝑋 (𝑥𝑍 → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥))) → ∀𝑥𝑋 (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥))))
38373impia 1113 . 2 ((𝑇𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ∀𝑥𝑋 (𝑥𝑍 → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥)))) → ∀𝑥𝑋 (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥)))
3911, 12, 15lnof 28526 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑇:𝑋⟶(BaseSet‘𝑊))
409, 10, 39mp3an12 1447 . . 3 (𝑇𝐿𝑇:𝑋⟶(BaseSet‘𝑊))
41 nmlnoubi.3 . . . 4 𝑁 = (𝑈 normOpOLD 𝑊)
4211, 12, 24, 19, 41, 9, 10nmoub2i 28545 . . 3 ((𝑇:𝑋⟶(BaseSet‘𝑊) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ∀𝑥𝑋 (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥))) → (𝑁𝑇) ≤ 𝐴)
4340, 42syl3an1 1159 . 2 ((𝑇𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ∀𝑥𝑋 (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥))) → (𝑁𝑇) ≤ 𝐴)
4438, 43syld3an3 1405 1 ((𝑇𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ∀𝑥𝑋 (𝑥𝑍 → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥)))) → (𝑁𝑇) ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  wral 3138   class class class wbr 5058  wf 6345  cfv 6349  (class class class)co 7150  cr 10530  0cc0 10531   · cmul 10536  cle 10670  NrmCVeccnv 28355  BaseSetcba 28357  0veccn0v 28359  normCVcnmcv 28361   LnOp clno 28511   normOpOLD cnmoo 28512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-seq 13364  df-exp 13424  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-grpo 28264  df-gid 28265  df-ginv 28266  df-ablo 28316  df-vc 28330  df-nv 28363  df-va 28366  df-ba 28367  df-sm 28368  df-0v 28369  df-nmcv 28371  df-lno 28515  df-nmoo 28516
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator