MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmmul Structured version   Visualization version   GIF version

Theorem nmmul 23272
Description: The norm of a product in a normed ring. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
nmmul.x 𝑋 = (Base‘𝑅)
nmmul.n 𝑁 = (norm‘𝑅)
nmmul.t · = (.r𝑅)
Assertion
Ref Expression
nmmul ((𝑅 ∈ NrmRing ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴 · 𝐵)) = ((𝑁𝐴) · (𝑁𝐵)))

Proof of Theorem nmmul
StepHypRef Expression
1 nmmul.n . . 3 𝑁 = (norm‘𝑅)
2 eqid 2821 . . 3 (AbsVal‘𝑅) = (AbsVal‘𝑅)
31, 2nrgabv 23269 . 2 (𝑅 ∈ NrmRing → 𝑁 ∈ (AbsVal‘𝑅))
4 nmmul.x . . 3 𝑋 = (Base‘𝑅)
5 nmmul.t . . 3 · = (.r𝑅)
62, 4, 5abvmul 19599 . 2 ((𝑁 ∈ (AbsVal‘𝑅) ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴 · 𝐵)) = ((𝑁𝐴) · (𝑁𝐵)))
73, 6syl3an1 1159 1 ((𝑅 ∈ NrmRing ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴 · 𝐵)) = ((𝑁𝐴) · (𝑁𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1083   = wceq 1533  wcel 2110  cfv 6354  (class class class)co 7155   · cmul 10541  Basecbs 16482  .rcmulr 16565  AbsValcabv 19586  normcnm 23185  NrmRingcnrg 23188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-fv 6362  df-ov 7158  df-oprab 7159  df-mpo 7160  df-map 8407  df-abv 19587  df-nrg 23194
This theorem is referenced by:  nrgdsdi  23273  nrgdsdir  23274  nminvr  23277  nmdvr  23278  nrginvrcnlem  23299
  Copyright terms: Public domain W3C validator