Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nmmulg Structured version   Visualization version   GIF version

Theorem nmmulg 31108
Description: The norm of a group product, provided the -module is normed. (Contributed by Thierry Arnoux, 8-Nov-2017.)
Hypotheses
Ref Expression
nmmulg.x 𝐵 = (Base‘𝑅)
nmmulg.n 𝑁 = (norm‘𝑅)
nmmulg.z 𝑍 = (ℤMod‘𝑅)
nmmulg.t · = (.g𝑅)
Assertion
Ref Expression
nmmulg ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (𝑁‘(𝑀 · 𝑋)) = ((abs‘𝑀) · (𝑁𝑋)))

Proof of Theorem nmmulg
StepHypRef Expression
1 simp2 1129 . . . 4 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → 𝑀 ∈ ℤ)
2 zringbas 20551 . . . . 5 ℤ = (Base‘ℤring)
3 nlmlmod 23214 . . . . . . . . 9 (𝑍 ∈ NrmMod → 𝑍 ∈ LMod)
4 nmmulg.z . . . . . . . . . 10 𝑍 = (ℤMod‘𝑅)
54zlmlmod 20598 . . . . . . . . 9 (𝑅 ∈ Abel ↔ 𝑍 ∈ LMod)
63, 5sylibr 235 . . . . . . . 8 (𝑍 ∈ NrmMod → 𝑅 ∈ Abel)
763ad2ant1 1125 . . . . . . 7 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → 𝑅 ∈ Abel)
84zlmsca 20596 . . . . . . 7 (𝑅 ∈ Abel → ℤring = (Scalar‘𝑍))
97, 8syl 17 . . . . . 6 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → ℤring = (Scalar‘𝑍))
109fveq2d 6667 . . . . 5 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (Base‘ℤring) = (Base‘(Scalar‘𝑍)))
112, 10syl5eq 2865 . . . 4 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → ℤ = (Base‘(Scalar‘𝑍)))
121, 11eleqtrd 2912 . . 3 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → 𝑀 ∈ (Base‘(Scalar‘𝑍)))
13 nmmulg.x . . . . 5 𝐵 = (Base‘𝑅)
144, 13zlmbas 20593 . . . 4 𝐵 = (Base‘𝑍)
15 eqid 2818 . . . 4 (norm‘𝑍) = (norm‘𝑍)
16 nmmulg.t . . . . 5 · = (.g𝑅)
174, 16zlmvsca 20597 . . . 4 · = ( ·𝑠𝑍)
18 eqid 2818 . . . 4 (Scalar‘𝑍) = (Scalar‘𝑍)
19 eqid 2818 . . . 4 (Base‘(Scalar‘𝑍)) = (Base‘(Scalar‘𝑍))
20 eqid 2818 . . . 4 (norm‘(Scalar‘𝑍)) = (norm‘(Scalar‘𝑍))
2114, 15, 17, 18, 19, 20nmvs 23212 . . 3 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ (Base‘(Scalar‘𝑍)) ∧ 𝑋𝐵) → ((norm‘𝑍)‘(𝑀 · 𝑋)) = (((norm‘(Scalar‘𝑍))‘𝑀) · ((norm‘𝑍)‘𝑋)))
2212, 21syld3an2 1403 . 2 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → ((norm‘𝑍)‘(𝑀 · 𝑋)) = (((norm‘(Scalar‘𝑍))‘𝑀) · ((norm‘𝑍)‘𝑋)))
23 nmmulg.n . . . . 5 𝑁 = (norm‘𝑅)
244, 23zlmnm 31106 . . . 4 (𝑅 ∈ Abel → 𝑁 = (norm‘𝑍))
257, 24syl 17 . . 3 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → 𝑁 = (norm‘𝑍))
2625fveq1d 6665 . 2 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (𝑁‘(𝑀 · 𝑋)) = ((norm‘𝑍)‘(𝑀 · 𝑋)))
27 zzsnm 31101 . . . . 5 (𝑀 ∈ ℤ → (abs‘𝑀) = ((norm‘ℤring)‘𝑀))
28273ad2ant2 1126 . . . 4 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (abs‘𝑀) = ((norm‘ℤring)‘𝑀))
299fveq2d 6667 . . . . 5 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (norm‘ℤring) = (norm‘(Scalar‘𝑍)))
3029fveq1d 6665 . . . 4 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → ((norm‘ℤring)‘𝑀) = ((norm‘(Scalar‘𝑍))‘𝑀))
3128, 30eqtrd 2853 . . 3 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (abs‘𝑀) = ((norm‘(Scalar‘𝑍))‘𝑀))
3225fveq1d 6665 . . 3 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (𝑁𝑋) = ((norm‘𝑍)‘𝑋))
3331, 32oveq12d 7163 . 2 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → ((abs‘𝑀) · (𝑁𝑋)) = (((norm‘(Scalar‘𝑍))‘𝑀) · ((norm‘𝑍)‘𝑋)))
3422, 26, 333eqtr4d 2863 1 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (𝑁‘(𝑀 · 𝑋)) = ((abs‘𝑀) · (𝑁𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1079   = wceq 1528  wcel 2105  cfv 6348  (class class class)co 7145   · cmul 10530  cz 11969  abscabs 14581  Basecbs 16471  Scalarcsca 16556  .gcmg 18162  Abelcabl 18836  LModclmod 19563  ringzring 20545  ℤModczlm 20576  normcnm 23113  NrmModcnlm 23117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603  ax-addf 10604  ax-mulf 10605
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-sup 8894  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-rp 12378  df-fz 12881  df-fzo 13022  df-seq 13358  df-exp 13418  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-starv 16568  df-sca 16569  df-vsca 16570  df-tset 16572  df-ple 16573  df-ds 16575  df-unif 16576  df-0g 16703  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-grp 18044  df-minusg 18045  df-mulg 18163  df-subg 18214  df-cmn 18837  df-abl 18838  df-mgp 19169  df-ur 19181  df-ring 19228  df-cring 19229  df-subrg 19462  df-lmod 19565  df-cnfld 20474  df-zring 20546  df-zlm 20580  df-nm 23119  df-nlm 23123
This theorem is referenced by:  zrhnm  31109
  Copyright terms: Public domain W3C validator