Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nmmulg Structured version   Visualization version   GIF version

Theorem nmmulg 29836
 Description: The norm of a group product, provided the ℤ-module is normed. (Contributed by Thierry Arnoux, 8-Nov-2017.)
Hypotheses
Ref Expression
nmmulg.x 𝐵 = (Base‘𝑅)
nmmulg.n 𝑁 = (norm‘𝑅)
nmmulg.z 𝑍 = (ℤMod‘𝑅)
nmmulg.t · = (.g𝑅)
Assertion
Ref Expression
nmmulg ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (𝑁‘(𝑀 · 𝑋)) = ((abs‘𝑀) · (𝑁𝑋)))

Proof of Theorem nmmulg
StepHypRef Expression
1 simp2 1060 . . . 4 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → 𝑀 ∈ ℤ)
2 zringbas 19764 . . . . 5 ℤ = (Base‘ℤring)
3 nlmlmod 22422 . . . . . . . . 9 (𝑍 ∈ NrmMod → 𝑍 ∈ LMod)
4 nmmulg.z . . . . . . . . . 10 𝑍 = (ℤMod‘𝑅)
54zlmlmod 19811 . . . . . . . . 9 (𝑅 ∈ Abel ↔ 𝑍 ∈ LMod)
63, 5sylibr 224 . . . . . . . 8 (𝑍 ∈ NrmMod → 𝑅 ∈ Abel)
763ad2ant1 1080 . . . . . . 7 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → 𝑅 ∈ Abel)
84zlmsca 19809 . . . . . . 7 (𝑅 ∈ Abel → ℤring = (Scalar‘𝑍))
97, 8syl 17 . . . . . 6 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → ℤring = (Scalar‘𝑍))
109fveq2d 6162 . . . . 5 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (Base‘ℤring) = (Base‘(Scalar‘𝑍)))
112, 10syl5eq 2667 . . . 4 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → ℤ = (Base‘(Scalar‘𝑍)))
121, 11eleqtrd 2700 . . 3 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → 𝑀 ∈ (Base‘(Scalar‘𝑍)))
13 nmmulg.x . . . . 5 𝐵 = (Base‘𝑅)
144, 13zlmbas 19806 . . . 4 𝐵 = (Base‘𝑍)
15 eqid 2621 . . . 4 (norm‘𝑍) = (norm‘𝑍)
16 nmmulg.t . . . . 5 · = (.g𝑅)
174, 16zlmvsca 19810 . . . 4 · = ( ·𝑠𝑍)
18 eqid 2621 . . . 4 (Scalar‘𝑍) = (Scalar‘𝑍)
19 eqid 2621 . . . 4 (Base‘(Scalar‘𝑍)) = (Base‘(Scalar‘𝑍))
20 eqid 2621 . . . 4 (norm‘(Scalar‘𝑍)) = (norm‘(Scalar‘𝑍))
2114, 15, 17, 18, 19, 20nmvs 22420 . . 3 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ (Base‘(Scalar‘𝑍)) ∧ 𝑋𝐵) → ((norm‘𝑍)‘(𝑀 · 𝑋)) = (((norm‘(Scalar‘𝑍))‘𝑀) · ((norm‘𝑍)‘𝑋)))
2212, 21syld3an2 1370 . 2 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → ((norm‘𝑍)‘(𝑀 · 𝑋)) = (((norm‘(Scalar‘𝑍))‘𝑀) · ((norm‘𝑍)‘𝑋)))
23 nmmulg.n . . . . 5 𝑁 = (norm‘𝑅)
244, 23zlmnm 29834 . . . 4 (𝑅 ∈ Abel → 𝑁 = (norm‘𝑍))
257, 24syl 17 . . 3 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → 𝑁 = (norm‘𝑍))
2625fveq1d 6160 . 2 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (𝑁‘(𝑀 · 𝑋)) = ((norm‘𝑍)‘(𝑀 · 𝑋)))
27 zzsnm 29829 . . . . 5 (𝑀 ∈ ℤ → (abs‘𝑀) = ((norm‘ℤring)‘𝑀))
28273ad2ant2 1081 . . . 4 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (abs‘𝑀) = ((norm‘ℤring)‘𝑀))
299fveq2d 6162 . . . . 5 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (norm‘ℤring) = (norm‘(Scalar‘𝑍)))
3029fveq1d 6160 . . . 4 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → ((norm‘ℤring)‘𝑀) = ((norm‘(Scalar‘𝑍))‘𝑀))
3128, 30eqtrd 2655 . . 3 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (abs‘𝑀) = ((norm‘(Scalar‘𝑍))‘𝑀))
3225fveq1d 6160 . . 3 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (𝑁𝑋) = ((norm‘𝑍)‘𝑋))
3331, 32oveq12d 6633 . 2 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → ((abs‘𝑀) · (𝑁𝑋)) = (((norm‘(Scalar‘𝑍))‘𝑀) · ((norm‘𝑍)‘𝑋)))
3422, 26, 333eqtr4d 2665 1 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (𝑁‘(𝑀 · 𝑋)) = ((abs‘𝑀) · (𝑁𝑋)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987  ‘cfv 5857  (class class class)co 6615   · cmul 9901  ℤcz 11337  abscabs 13924  Basecbs 15800  Scalarcsca 15884  .gcmg 17480  Abelcabl 18134  LModclmod 18803  ℤringzring 19758  ℤModczlm 19789  normcnm 22321  NrmModcnlm 22325 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-inf2 8498  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-pre-sup 9974  ax-addf 9975  ax-mulf 9976 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-oadd 7524  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-sup 8308  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-nn 10981  df-2 11039  df-3 11040  df-4 11041  df-5 11042  df-6 11043  df-7 11044  df-8 11045  df-9 11046  df-n0 11253  df-z 11338  df-dec 11454  df-uz 11648  df-rp 11793  df-fz 12285  df-fzo 12423  df-seq 12758  df-exp 12817  df-cj 13789  df-re 13790  df-im 13791  df-sqrt 13925  df-abs 13926  df-struct 15802  df-ndx 15803  df-slot 15804  df-base 15805  df-sets 15806  df-ress 15807  df-plusg 15894  df-mulr 15895  df-starv 15896  df-sca 15897  df-vsca 15898  df-tset 15900  df-ple 15901  df-ds 15904  df-unif 15905  df-0g 16042  df-mgm 17182  df-sgrp 17224  df-mnd 17235  df-grp 17365  df-minusg 17366  df-mulg 17481  df-subg 17531  df-cmn 18135  df-abl 18136  df-mgp 18430  df-ur 18442  df-ring 18489  df-cring 18490  df-subrg 18718  df-lmod 18805  df-cnfld 19687  df-zring 19759  df-zlm 19793  df-nm 22327  df-nlm 22331 This theorem is referenced by:  zrhnm  29837
 Copyright terms: Public domain W3C validator