MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmods Structured version   Visualization version   GIF version

Theorem nmods 22638
Description: Upper bound for the distance between the values of a bounded linear operator. (Contributed by Mario Carneiro, 22-Oct-2015.)
Hypotheses
Ref Expression
nmods.n 𝑁 = (𝑆 normOp 𝑇)
nmods.v 𝑉 = (Base‘𝑆)
nmods.c 𝐶 = (dist‘𝑆)
nmods.d 𝐷 = (dist‘𝑇)
Assertion
Ref Expression
nmods ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → ((𝐹𝐴)𝐷(𝐹𝐵)) ≤ ((𝑁𝐹) · (𝐴𝐶𝐵)))

Proof of Theorem nmods
StepHypRef Expression
1 simp1 1128 . . 3 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → 𝐹 ∈ (𝑆 NGHom 𝑇))
2 nghmrcl1 22626 . . . . 5 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝑆 ∈ NrmGrp)
3 ngpgrp 22493 . . . . 5 (𝑆 ∈ NrmGrp → 𝑆 ∈ Grp)
42, 3syl 17 . . . 4 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝑆 ∈ Grp)
5 nmods.v . . . . 5 𝑉 = (Base‘𝑆)
6 eqid 2692 . . . . 5 (-g𝑆) = (-g𝑆)
75, 6grpsubcl 17585 . . . 4 ((𝑆 ∈ Grp ∧ 𝐴𝑉𝐵𝑉) → (𝐴(-g𝑆)𝐵) ∈ 𝑉)
84, 7syl3an1 1440 . . 3 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → (𝐴(-g𝑆)𝐵) ∈ 𝑉)
9 nmods.n . . . 4 𝑁 = (𝑆 normOp 𝑇)
10 eqid 2692 . . . 4 (norm‘𝑆) = (norm‘𝑆)
11 eqid 2692 . . . 4 (norm‘𝑇) = (norm‘𝑇)
129, 5, 10, 11nmoi 22622 . . 3 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝐴(-g𝑆)𝐵) ∈ 𝑉) → ((norm‘𝑇)‘(𝐹‘(𝐴(-g𝑆)𝐵))) ≤ ((𝑁𝐹) · ((norm‘𝑆)‘(𝐴(-g𝑆)𝐵))))
131, 8, 12syl2anc 696 . 2 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → ((norm‘𝑇)‘(𝐹‘(𝐴(-g𝑆)𝐵))) ≤ ((𝑁𝐹) · ((norm‘𝑆)‘(𝐴(-g𝑆)𝐵))))
14 nghmrcl2 22627 . . . . 5 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝑇 ∈ NrmGrp)
15143ad2ant1 1125 . . . 4 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → 𝑇 ∈ NrmGrp)
16 nghmghm 22628 . . . . . . 7 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
17163ad2ant1 1125 . . . . . 6 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
18 eqid 2692 . . . . . . 7 (Base‘𝑇) = (Base‘𝑇)
195, 18ghmf 17754 . . . . . 6 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑉⟶(Base‘𝑇))
2017, 19syl 17 . . . . 5 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → 𝐹:𝑉⟶(Base‘𝑇))
21 simp2 1129 . . . . 5 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → 𝐴𝑉)
2220, 21ffvelrnd 6443 . . . 4 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → (𝐹𝐴) ∈ (Base‘𝑇))
23 simp3 1130 . . . . 5 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → 𝐵𝑉)
2420, 23ffvelrnd 6443 . . . 4 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → (𝐹𝐵) ∈ (Base‘𝑇))
25 eqid 2692 . . . . 5 (-g𝑇) = (-g𝑇)
26 nmods.d . . . . 5 𝐷 = (dist‘𝑇)
2711, 18, 25, 26ngpds 22498 . . . 4 ((𝑇 ∈ NrmGrp ∧ (𝐹𝐴) ∈ (Base‘𝑇) ∧ (𝐹𝐵) ∈ (Base‘𝑇)) → ((𝐹𝐴)𝐷(𝐹𝐵)) = ((norm‘𝑇)‘((𝐹𝐴)(-g𝑇)(𝐹𝐵))))
2815, 22, 24, 27syl3anc 1407 . . 3 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → ((𝐹𝐴)𝐷(𝐹𝐵)) = ((norm‘𝑇)‘((𝐹𝐴)(-g𝑇)(𝐹𝐵))))
295, 6, 25ghmsub 17758 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → (𝐹‘(𝐴(-g𝑆)𝐵)) = ((𝐹𝐴)(-g𝑇)(𝐹𝐵)))
3016, 29syl3an1 1440 . . . 4 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → (𝐹‘(𝐴(-g𝑆)𝐵)) = ((𝐹𝐴)(-g𝑇)(𝐹𝐵)))
3130fveq2d 6276 . . 3 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → ((norm‘𝑇)‘(𝐹‘(𝐴(-g𝑆)𝐵))) = ((norm‘𝑇)‘((𝐹𝐴)(-g𝑇)(𝐹𝐵))))
3228, 31eqtr4d 2729 . 2 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → ((𝐹𝐴)𝐷(𝐹𝐵)) = ((norm‘𝑇)‘(𝐹‘(𝐴(-g𝑆)𝐵))))
33 nmods.c . . . . 5 𝐶 = (dist‘𝑆)
3410, 5, 6, 33ngpds 22498 . . . 4 ((𝑆 ∈ NrmGrp ∧ 𝐴𝑉𝐵𝑉) → (𝐴𝐶𝐵) = ((norm‘𝑆)‘(𝐴(-g𝑆)𝐵)))
352, 34syl3an1 1440 . . 3 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → (𝐴𝐶𝐵) = ((norm‘𝑆)‘(𝐴(-g𝑆)𝐵)))
3635oveq2d 6749 . 2 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → ((𝑁𝐹) · (𝐴𝐶𝐵)) = ((𝑁𝐹) · ((norm‘𝑆)‘(𝐴(-g𝑆)𝐵))))
3713, 32, 363brtr4d 4760 1 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → ((𝐹𝐴)𝐷(𝐹𝐵)) ≤ ((𝑁𝐹) · (𝐴𝐶𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1072   = wceq 1564  wcel 2071   class class class wbr 4728  wf 5965  cfv 5969  (class class class)co 6733   · cmul 10022  cle 10156  Basecbs 15948  distcds 16041  Grpcgrp 17512  -gcsg 17514   GrpHom cghm 17747  normcnm 22471  NrmGrpcngp 22472   normOp cnmo 22599   NGHom cnghm 22600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1818  ax-5 1920  ax-6 1986  ax-7 2022  ax-8 2073  ax-9 2080  ax-10 2100  ax-11 2115  ax-12 2128  ax-13 2323  ax-ext 2672  ax-rep 4847  ax-sep 4857  ax-nul 4865  ax-pow 4916  ax-pr 4979  ax-un 7034  ax-cnex 10073  ax-resscn 10074  ax-1cn 10075  ax-icn 10076  ax-addcl 10077  ax-addrcl 10078  ax-mulcl 10079  ax-mulrcl 10080  ax-mulcom 10081  ax-addass 10082  ax-mulass 10083  ax-distr 10084  ax-i2m1 10085  ax-1ne0 10086  ax-1rid 10087  ax-rnegex 10088  ax-rrecex 10089  ax-cnre 10090  ax-pre-lttri 10091  ax-pre-lttrn 10092  ax-pre-ltadd 10093  ax-pre-mulgt0 10094  ax-pre-sup 10095
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1567  df-ex 1786  df-nf 1791  df-sb 1979  df-eu 2543  df-mo 2544  df-clab 2679  df-cleq 2685  df-clel 2688  df-nfc 2823  df-ne 2865  df-nel 2968  df-ral 2987  df-rex 2988  df-reu 2989  df-rmo 2990  df-rab 2991  df-v 3274  df-sbc 3510  df-csb 3608  df-dif 3651  df-un 3653  df-in 3655  df-ss 3662  df-pss 3664  df-nul 3992  df-if 4163  df-pw 4236  df-sn 4254  df-pr 4256  df-tp 4258  df-op 4260  df-uni 4513  df-iun 4598  df-br 4729  df-opab 4789  df-mpt 4806  df-tr 4829  df-id 5096  df-eprel 5101  df-po 5107  df-so 5108  df-fr 5145  df-we 5147  df-xp 5192  df-rel 5193  df-cnv 5194  df-co 5195  df-dm 5196  df-rn 5197  df-res 5198  df-ima 5199  df-pred 5761  df-ord 5807  df-on 5808  df-lim 5809  df-suc 5810  df-iota 5932  df-fun 5971  df-fn 5972  df-f 5973  df-f1 5974  df-fo 5975  df-f1o 5976  df-fv 5977  df-riota 6694  df-ov 6736  df-oprab 6737  df-mpt2 6738  df-om 7151  df-1st 7253  df-2nd 7254  df-wrecs 7495  df-recs 7556  df-rdg 7594  df-er 7830  df-map 7944  df-en 8041  df-dom 8042  df-sdom 8043  df-sup 8432  df-inf 8433  df-pnf 10157  df-mnf 10158  df-xr 10159  df-ltxr 10160  df-le 10161  df-sub 10349  df-neg 10350  df-div 10766  df-nn 11102  df-2 11160  df-n0 11374  df-z 11459  df-uz 11769  df-q 11871  df-rp 11915  df-xneg 12028  df-xadd 12029  df-xmul 12030  df-ico 12263  df-0g 16193  df-topgen 16195  df-mgm 17332  df-sgrp 17374  df-mnd 17385  df-grp 17515  df-minusg 17516  df-sbg 17517  df-ghm 17748  df-psmet 19829  df-xmet 19830  df-met 19831  df-bl 19832  df-mopn 19833  df-top 20790  df-topon 20807  df-topsp 20828  df-bases 20841  df-xms 22215  df-ms 22216  df-nm 22477  df-ngp 22478  df-nmo 22602  df-nghm 22603
This theorem is referenced by:  nghmcn  22639
  Copyright terms: Public domain W3C validator