MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmods Structured version   Visualization version   GIF version

Theorem nmods 23345
Description: Upper bound for the distance between the values of a bounded linear operator. (Contributed by Mario Carneiro, 22-Oct-2015.)
Hypotheses
Ref Expression
nmods.n 𝑁 = (𝑆 normOp 𝑇)
nmods.v 𝑉 = (Base‘𝑆)
nmods.c 𝐶 = (dist‘𝑆)
nmods.d 𝐷 = (dist‘𝑇)
Assertion
Ref Expression
nmods ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → ((𝐹𝐴)𝐷(𝐹𝐵)) ≤ ((𝑁𝐹) · (𝐴𝐶𝐵)))

Proof of Theorem nmods
StepHypRef Expression
1 simp1 1131 . . 3 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → 𝐹 ∈ (𝑆 NGHom 𝑇))
2 nghmrcl1 23333 . . . . 5 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝑆 ∈ NrmGrp)
3 ngpgrp 23200 . . . . 5 (𝑆 ∈ NrmGrp → 𝑆 ∈ Grp)
42, 3syl 17 . . . 4 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝑆 ∈ Grp)
5 nmods.v . . . . 5 𝑉 = (Base‘𝑆)
6 eqid 2819 . . . . 5 (-g𝑆) = (-g𝑆)
75, 6grpsubcl 18171 . . . 4 ((𝑆 ∈ Grp ∧ 𝐴𝑉𝐵𝑉) → (𝐴(-g𝑆)𝐵) ∈ 𝑉)
84, 7syl3an1 1158 . . 3 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → (𝐴(-g𝑆)𝐵) ∈ 𝑉)
9 nmods.n . . . 4 𝑁 = (𝑆 normOp 𝑇)
10 eqid 2819 . . . 4 (norm‘𝑆) = (norm‘𝑆)
11 eqid 2819 . . . 4 (norm‘𝑇) = (norm‘𝑇)
129, 5, 10, 11nmoi 23329 . . 3 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝐴(-g𝑆)𝐵) ∈ 𝑉) → ((norm‘𝑇)‘(𝐹‘(𝐴(-g𝑆)𝐵))) ≤ ((𝑁𝐹) · ((norm‘𝑆)‘(𝐴(-g𝑆)𝐵))))
131, 8, 12syl2anc 586 . 2 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → ((norm‘𝑇)‘(𝐹‘(𝐴(-g𝑆)𝐵))) ≤ ((𝑁𝐹) · ((norm‘𝑆)‘(𝐴(-g𝑆)𝐵))))
14 nghmrcl2 23334 . . . . 5 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝑇 ∈ NrmGrp)
15143ad2ant1 1128 . . . 4 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → 𝑇 ∈ NrmGrp)
16 nghmghm 23335 . . . . . . 7 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
17163ad2ant1 1128 . . . . . 6 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
18 eqid 2819 . . . . . . 7 (Base‘𝑇) = (Base‘𝑇)
195, 18ghmf 18354 . . . . . 6 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑉⟶(Base‘𝑇))
2017, 19syl 17 . . . . 5 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → 𝐹:𝑉⟶(Base‘𝑇))
21 simp2 1132 . . . . 5 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → 𝐴𝑉)
2220, 21ffvelrnd 6845 . . . 4 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → (𝐹𝐴) ∈ (Base‘𝑇))
23 simp3 1133 . . . . 5 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → 𝐵𝑉)
2420, 23ffvelrnd 6845 . . . 4 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → (𝐹𝐵) ∈ (Base‘𝑇))
25 eqid 2819 . . . . 5 (-g𝑇) = (-g𝑇)
26 nmods.d . . . . 5 𝐷 = (dist‘𝑇)
2711, 18, 25, 26ngpds 23205 . . . 4 ((𝑇 ∈ NrmGrp ∧ (𝐹𝐴) ∈ (Base‘𝑇) ∧ (𝐹𝐵) ∈ (Base‘𝑇)) → ((𝐹𝐴)𝐷(𝐹𝐵)) = ((norm‘𝑇)‘((𝐹𝐴)(-g𝑇)(𝐹𝐵))))
2815, 22, 24, 27syl3anc 1366 . . 3 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → ((𝐹𝐴)𝐷(𝐹𝐵)) = ((norm‘𝑇)‘((𝐹𝐴)(-g𝑇)(𝐹𝐵))))
295, 6, 25ghmsub 18358 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → (𝐹‘(𝐴(-g𝑆)𝐵)) = ((𝐹𝐴)(-g𝑇)(𝐹𝐵)))
3016, 29syl3an1 1158 . . . 4 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → (𝐹‘(𝐴(-g𝑆)𝐵)) = ((𝐹𝐴)(-g𝑇)(𝐹𝐵)))
3130fveq2d 6667 . . 3 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → ((norm‘𝑇)‘(𝐹‘(𝐴(-g𝑆)𝐵))) = ((norm‘𝑇)‘((𝐹𝐴)(-g𝑇)(𝐹𝐵))))
3228, 31eqtr4d 2857 . 2 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → ((𝐹𝐴)𝐷(𝐹𝐵)) = ((norm‘𝑇)‘(𝐹‘(𝐴(-g𝑆)𝐵))))
33 nmods.c . . . . 5 𝐶 = (dist‘𝑆)
3410, 5, 6, 33ngpds 23205 . . . 4 ((𝑆 ∈ NrmGrp ∧ 𝐴𝑉𝐵𝑉) → (𝐴𝐶𝐵) = ((norm‘𝑆)‘(𝐴(-g𝑆)𝐵)))
352, 34syl3an1 1158 . . 3 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → (𝐴𝐶𝐵) = ((norm‘𝑆)‘(𝐴(-g𝑆)𝐵)))
3635oveq2d 7164 . 2 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → ((𝑁𝐹) · (𝐴𝐶𝐵)) = ((𝑁𝐹) · ((norm‘𝑆)‘(𝐴(-g𝑆)𝐵))))
3713, 32, 363brtr4d 5089 1 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → ((𝐹𝐴)𝐷(𝐹𝐵)) ≤ ((𝑁𝐹) · (𝐴𝐶𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1082   = wceq 1531  wcel 2108   class class class wbr 5057  wf 6344  cfv 6348  (class class class)co 7148   · cmul 10534  cle 10668  Basecbs 16475  distcds 16566  Grpcgrp 18095  -gcsg 18097   GrpHom cghm 18347  normcnm 23178  NrmGrpcngp 23179   normOp cnmo 23306   NGHom cnghm 23307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-er 8281  df-map 8400  df-en 8502  df-dom 8503  df-sdom 8504  df-sup 8898  df-inf 8899  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-n0 11890  df-z 11974  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ico 12736  df-0g 16707  df-topgen 16709  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-sbg 18100  df-ghm 18348  df-psmet 20529  df-xmet 20530  df-met 20531  df-bl 20532  df-mopn 20533  df-top 21494  df-topon 21511  df-topsp 21533  df-bases 21546  df-xms 22922  df-ms 22923  df-nm 23184  df-ngp 23185  df-nmo 23309  df-nghm 23310
This theorem is referenced by:  nghmcn  23346
  Copyright terms: Public domain W3C validator