MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoeq0 Structured version   Visualization version   GIF version

Theorem nmoeq0 22480
Description: The operator norm is zero only for the zero operator. (Contributed by Mario Carneiro, 20-Oct-2015.)
Hypotheses
Ref Expression
nmo0.1 𝑁 = (𝑆 normOp 𝑇)
nmo0.2 𝑉 = (Base‘𝑆)
nmo0.3 0 = (0g𝑇)
Assertion
Ref Expression
nmoeq0 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → ((𝑁𝐹) = 0 ↔ 𝐹 = (𝑉 × { 0 })))

Proof of Theorem nmoeq0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . . . . . . . 11 ((𝑁𝐹) = 0 → (𝑁𝐹) = 0)
2 0re 10000 . . . . . . . . . . 11 0 ∈ ℝ
31, 2syl6eqel 2706 . . . . . . . . . 10 ((𝑁𝐹) = 0 → (𝑁𝐹) ∈ ℝ)
4 nmo0.1 . . . . . . . . . . . 12 𝑁 = (𝑆 normOp 𝑇)
54isnghm2 22468 . . . . . . . . . . 11 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝐹 ∈ (𝑆 NGHom 𝑇) ↔ (𝑁𝐹) ∈ ℝ))
65biimpar 502 . . . . . . . . . 10 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) ∈ ℝ) → 𝐹 ∈ (𝑆 NGHom 𝑇))
73, 6sylan2 491 . . . . . . . . 9 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) → 𝐹 ∈ (𝑆 NGHom 𝑇))
8 nmo0.2 . . . . . . . . . 10 𝑉 = (Base‘𝑆)
9 eqid 2621 . . . . . . . . . 10 (norm‘𝑆) = (norm‘𝑆)
10 eqid 2621 . . . . . . . . . 10 (norm‘𝑇) = (norm‘𝑇)
114, 8, 9, 10nmoi 22472 . . . . . . . . 9 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑥𝑉) → ((norm‘𝑇)‘(𝐹𝑥)) ≤ ((𝑁𝐹) · ((norm‘𝑆)‘𝑥)))
127, 11sylan 488 . . . . . . . 8 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) ∧ 𝑥𝑉) → ((norm‘𝑇)‘(𝐹𝑥)) ≤ ((𝑁𝐹) · ((norm‘𝑆)‘𝑥)))
13 simplr 791 . . . . . . . . . 10 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) ∧ 𝑥𝑉) → (𝑁𝐹) = 0)
1413oveq1d 6630 . . . . . . . . 9 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) ∧ 𝑥𝑉) → ((𝑁𝐹) · ((norm‘𝑆)‘𝑥)) = (0 · ((norm‘𝑆)‘𝑥)))
15 simpl1 1062 . . . . . . . . . . . 12 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) → 𝑆 ∈ NrmGrp)
168, 9nmcl 22360 . . . . . . . . . . . 12 ((𝑆 ∈ NrmGrp ∧ 𝑥𝑉) → ((norm‘𝑆)‘𝑥) ∈ ℝ)
1715, 16sylan 488 . . . . . . . . . . 11 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) ∧ 𝑥𝑉) → ((norm‘𝑆)‘𝑥) ∈ ℝ)
1817recnd 10028 . . . . . . . . . 10 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) ∧ 𝑥𝑉) → ((norm‘𝑆)‘𝑥) ∈ ℂ)
1918mul02d 10194 . . . . . . . . 9 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) ∧ 𝑥𝑉) → (0 · ((norm‘𝑆)‘𝑥)) = 0)
2014, 19eqtrd 2655 . . . . . . . 8 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) ∧ 𝑥𝑉) → ((𝑁𝐹) · ((norm‘𝑆)‘𝑥)) = 0)
2112, 20breqtrd 4649 . . . . . . 7 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) ∧ 𝑥𝑉) → ((norm‘𝑇)‘(𝐹𝑥)) ≤ 0)
22 simpll2 1099 . . . . . . . 8 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) ∧ 𝑥𝑉) → 𝑇 ∈ NrmGrp)
23 simpl3 1064 . . . . . . . . . 10 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
24 eqid 2621 . . . . . . . . . . 11 (Base‘𝑇) = (Base‘𝑇)
258, 24ghmf 17604 . . . . . . . . . 10 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑉⟶(Base‘𝑇))
2623, 25syl 17 . . . . . . . . 9 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) → 𝐹:𝑉⟶(Base‘𝑇))
2726ffvelrnda 6325 . . . . . . . 8 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) ∧ 𝑥𝑉) → (𝐹𝑥) ∈ (Base‘𝑇))
2824, 10nmge0 22361 . . . . . . . 8 ((𝑇 ∈ NrmGrp ∧ (𝐹𝑥) ∈ (Base‘𝑇)) → 0 ≤ ((norm‘𝑇)‘(𝐹𝑥)))
2922, 27, 28syl2anc 692 . . . . . . 7 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) ∧ 𝑥𝑉) → 0 ≤ ((norm‘𝑇)‘(𝐹𝑥)))
3024, 10nmcl 22360 . . . . . . . . 9 ((𝑇 ∈ NrmGrp ∧ (𝐹𝑥) ∈ (Base‘𝑇)) → ((norm‘𝑇)‘(𝐹𝑥)) ∈ ℝ)
3122, 27, 30syl2anc 692 . . . . . . . 8 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) ∧ 𝑥𝑉) → ((norm‘𝑇)‘(𝐹𝑥)) ∈ ℝ)
32 letri3 10083 . . . . . . . 8 ((((norm‘𝑇)‘(𝐹𝑥)) ∈ ℝ ∧ 0 ∈ ℝ) → (((norm‘𝑇)‘(𝐹𝑥)) = 0 ↔ (((norm‘𝑇)‘(𝐹𝑥)) ≤ 0 ∧ 0 ≤ ((norm‘𝑇)‘(𝐹𝑥)))))
3331, 2, 32sylancl 693 . . . . . . 7 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) ∧ 𝑥𝑉) → (((norm‘𝑇)‘(𝐹𝑥)) = 0 ↔ (((norm‘𝑇)‘(𝐹𝑥)) ≤ 0 ∧ 0 ≤ ((norm‘𝑇)‘(𝐹𝑥)))))
3421, 29, 33mpbir2and 956 . . . . . 6 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) ∧ 𝑥𝑉) → ((norm‘𝑇)‘(𝐹𝑥)) = 0)
35 nmo0.3 . . . . . . . 8 0 = (0g𝑇)
3624, 10, 35nmeq0 22362 . . . . . . 7 ((𝑇 ∈ NrmGrp ∧ (𝐹𝑥) ∈ (Base‘𝑇)) → (((norm‘𝑇)‘(𝐹𝑥)) = 0 ↔ (𝐹𝑥) = 0 ))
3722, 27, 36syl2anc 692 . . . . . 6 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) ∧ 𝑥𝑉) → (((norm‘𝑇)‘(𝐹𝑥)) = 0 ↔ (𝐹𝑥) = 0 ))
3834, 37mpbid 222 . . . . 5 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) ∧ 𝑥𝑉) → (𝐹𝑥) = 0 )
3938mpteq2dva 4714 . . . 4 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) → (𝑥𝑉 ↦ (𝐹𝑥)) = (𝑥𝑉0 ))
4026feqmptd 6216 . . . 4 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) → 𝐹 = (𝑥𝑉 ↦ (𝐹𝑥)))
41 fconstmpt 5133 . . . . 5 (𝑉 × { 0 }) = (𝑥𝑉0 )
4241a1i 11 . . . 4 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) → (𝑉 × { 0 }) = (𝑥𝑉0 ))
4339, 40, 423eqtr4d 2665 . . 3 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) → 𝐹 = (𝑉 × { 0 }))
4443ex 450 . 2 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → ((𝑁𝐹) = 0 → 𝐹 = (𝑉 × { 0 })))
454, 8, 35nmo0 22479 . . . 4 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑁‘(𝑉 × { 0 })) = 0)
46453adant3 1079 . . 3 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝑁‘(𝑉 × { 0 })) = 0)
47 fveq2 6158 . . . 4 (𝐹 = (𝑉 × { 0 }) → (𝑁𝐹) = (𝑁‘(𝑉 × { 0 })))
4847eqeq1d 2623 . . 3 (𝐹 = (𝑉 × { 0 }) → ((𝑁𝐹) = 0 ↔ (𝑁‘(𝑉 × { 0 })) = 0))
4946, 48syl5ibrcom 237 . 2 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝐹 = (𝑉 × { 0 }) → (𝑁𝐹) = 0))
5044, 49impbid 202 1 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → ((𝑁𝐹) = 0 ↔ 𝐹 = (𝑉 × { 0 })))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  {csn 4155   class class class wbr 4623  cmpt 4683   × cxp 5082  wf 5853  cfv 5857  (class class class)co 6615  cr 9895  0cc0 9896   · cmul 9901  cle 10035  Basecbs 15800  0gc0g 16040   GrpHom cghm 17597  normcnm 22321  NrmGrpcngp 22322   normOp cnmo 22449   NGHom cnghm 22450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-pre-sup 9974
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-er 7702  df-map 7819  df-en 7916  df-dom 7917  df-sdom 7918  df-sup 8308  df-inf 8309  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-nn 10981  df-2 11039  df-n0 11253  df-z 11338  df-uz 11648  df-q 11749  df-rp 11793  df-xneg 11906  df-xadd 11907  df-xmul 11908  df-ico 12139  df-0g 16042  df-topgen 16044  df-mgm 17182  df-sgrp 17224  df-mnd 17235  df-mhm 17275  df-grp 17365  df-ghm 17598  df-psmet 19678  df-xmet 19679  df-met 19680  df-bl 19681  df-mopn 19682  df-top 20639  df-topon 20656  df-topsp 20677  df-bases 20690  df-xms 22065  df-ms 22066  df-nm 22327  df-ngp 22328  df-nmo 22452  df-nghm 22453
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator