MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoge0 Structured version   Visualization version   GIF version

Theorem nmoge0 22506
Description: The operator norm of an operator is nonnegative. (Contributed by Mario Carneiro, 18-Oct-2015.)
Hypothesis
Ref Expression
nmofval.1 𝑁 = (𝑆 normOp 𝑇)
Assertion
Ref Expression
nmoge0 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → 0 ≤ (𝑁𝐹))

Proof of Theorem nmoge0
Dummy variables 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elrege0 12263 . . . . . 6 (𝑟 ∈ (0[,)+∞) ↔ (𝑟 ∈ ℝ ∧ 0 ≤ 𝑟))
21simprbi 480 . . . . 5 (𝑟 ∈ (0[,)+∞) → 0 ≤ 𝑟)
32adantl 482 . . . 4 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑟 ∈ (0[,)+∞)) → 0 ≤ 𝑟)
43a1d 25 . . 3 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑟 ∈ (0[,)+∞)) → (∀𝑥 ∈ (Base‘𝑆)((norm‘𝑇)‘(𝐹𝑥)) ≤ (𝑟 · ((norm‘𝑆)‘𝑥)) → 0 ≤ 𝑟))
54ralrimiva 2963 . 2 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → ∀𝑟 ∈ (0[,)+∞)(∀𝑥 ∈ (Base‘𝑆)((norm‘𝑇)‘(𝐹𝑥)) ≤ (𝑟 · ((norm‘𝑆)‘𝑥)) → 0 ≤ 𝑟))
6 0xr 10071 . . 3 0 ∈ ℝ*
7 nmofval.1 . . . 4 𝑁 = (𝑆 normOp 𝑇)
8 eqid 2620 . . . 4 (Base‘𝑆) = (Base‘𝑆)
9 eqid 2620 . . . 4 (norm‘𝑆) = (norm‘𝑆)
10 eqid 2620 . . . 4 (norm‘𝑇) = (norm‘𝑇)
117, 8, 9, 10nmogelb 22501 . . 3 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 0 ∈ ℝ*) → (0 ≤ (𝑁𝐹) ↔ ∀𝑟 ∈ (0[,)+∞)(∀𝑥 ∈ (Base‘𝑆)((norm‘𝑇)‘(𝐹𝑥)) ≤ (𝑟 · ((norm‘𝑆)‘𝑥)) → 0 ≤ 𝑟)))
126, 11mpan2 706 . 2 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (0 ≤ (𝑁𝐹) ↔ ∀𝑟 ∈ (0[,)+∞)(∀𝑥 ∈ (Base‘𝑆)((norm‘𝑇)‘(𝐹𝑥)) ≤ (𝑟 · ((norm‘𝑆)‘𝑥)) → 0 ≤ 𝑟)))
135, 12mpbird 247 1 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → 0 ≤ (𝑁𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1481  wcel 1988  wral 2909   class class class wbr 4644  cfv 5876  (class class class)co 6635  cr 9920  0cc0 9921   · cmul 9926  +∞cpnf 10056  *cxr 10058  cle 10060  [,)cico 12162  Basecbs 15838   GrpHom cghm 17638  normcnm 22362  NrmGrpcngp 22363   normOp cnmo 22490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998  ax-pre-sup 9999
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-id 5014  df-po 5025  df-so 5026  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-1st 7153  df-2nd 7154  df-er 7727  df-en 7941  df-dom 7942  df-sdom 7943  df-sup 8333  df-inf 8334  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-ico 12166  df-nmo 22493
This theorem is referenced by:  isnghm3  22510  bddnghm  22511  nmoi  22513  nmoix  22514  nmo0  22520  nmoco  22522  nmotri  22524  nmoid  22527  nghmcn  22530  nmoleub2lem  22895
  Copyright terms: Public domain W3C validator