Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoi2 Structured version   Visualization version   GIF version

Theorem nmoi2 22444
 Description: The operator norm is a bound on the growth of a vector under the action of the operator. (Contributed by Mario Carneiro, 19-Oct-2015.)
Hypotheses
Ref Expression
nmofval.1 𝑁 = (𝑆 normOp 𝑇)
nmoi.2 𝑉 = (Base‘𝑆)
nmoi.3 𝐿 = (norm‘𝑆)
nmoi.4 𝑀 = (norm‘𝑇)
nmoi2.z 0 = (0g𝑆)
Assertion
Ref Expression
nmoi2 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → ((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ≤ (𝑁𝐹))

Proof of Theorem nmoi2
StepHypRef Expression
1 simpl2 1063 . . . . 5 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → 𝑇 ∈ NrmGrp)
2 simpl3 1064 . . . . . . 7 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
3 nmoi.2 . . . . . . . 8 𝑉 = (Base‘𝑆)
4 eqid 2621 . . . . . . . 8 (Base‘𝑇) = (Base‘𝑇)
53, 4ghmf 17585 . . . . . . 7 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑉⟶(Base‘𝑇))
62, 5syl 17 . . . . . 6 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → 𝐹:𝑉⟶(Base‘𝑇))
7 simprl 793 . . . . . 6 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → 𝑋𝑉)
86, 7ffvelrnd 6316 . . . . 5 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → (𝐹𝑋) ∈ (Base‘𝑇))
9 nmoi.4 . . . . . 6 𝑀 = (norm‘𝑇)
104, 9nmcl 22330 . . . . 5 ((𝑇 ∈ NrmGrp ∧ (𝐹𝑋) ∈ (Base‘𝑇)) → (𝑀‘(𝐹𝑋)) ∈ ℝ)
111, 8, 10syl2anc 692 . . . 4 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → (𝑀‘(𝐹𝑋)) ∈ ℝ)
1211rexrd 10033 . . 3 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → (𝑀‘(𝐹𝑋)) ∈ ℝ*)
13 nmofval.1 . . . . . 6 𝑁 = (𝑆 normOp 𝑇)
1413nmocl 22434 . . . . 5 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝑁𝐹) ∈ ℝ*)
1514adantr 481 . . . 4 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → (𝑁𝐹) ∈ ℝ*)
16 nmoi.3 . . . . . . . 8 𝐿 = (norm‘𝑆)
17 nmoi2.z . . . . . . . 8 0 = (0g𝑆)
183, 16, 17nmrpcl 22334 . . . . . . 7 ((𝑆 ∈ NrmGrp ∧ 𝑋𝑉𝑋0 ) → (𝐿𝑋) ∈ ℝ+)
19183expb 1263 . . . . . 6 ((𝑆 ∈ NrmGrp ∧ (𝑋𝑉𝑋0 )) → (𝐿𝑋) ∈ ℝ+)
20193ad2antl1 1221 . . . . 5 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → (𝐿𝑋) ∈ ℝ+)
2120rpxrd 11817 . . . 4 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → (𝐿𝑋) ∈ ℝ*)
2215, 21xmulcld 12075 . . 3 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → ((𝑁𝐹) ·e (𝐿𝑋)) ∈ ℝ*)
2320rpreccld 11826 . . . . 5 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → (1 / (𝐿𝑋)) ∈ ℝ+)
2423rpxrd 11817 . . . 4 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → (1 / (𝐿𝑋)) ∈ ℝ*)
2523rpge0d 11820 . . . 4 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → 0 ≤ (1 / (𝐿𝑋)))
2624, 25jca 554 . . 3 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → ((1 / (𝐿𝑋)) ∈ ℝ* ∧ 0 ≤ (1 / (𝐿𝑋))))
2713, 3, 16, 9nmoix 22443 . . . 4 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (𝑀‘(𝐹𝑋)) ≤ ((𝑁𝐹) ·e (𝐿𝑋)))
2827adantrr 752 . . 3 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → (𝑀‘(𝐹𝑋)) ≤ ((𝑁𝐹) ·e (𝐿𝑋)))
29 xlemul1a 12061 . . 3 ((((𝑀‘(𝐹𝑋)) ∈ ℝ* ∧ ((𝑁𝐹) ·e (𝐿𝑋)) ∈ ℝ* ∧ ((1 / (𝐿𝑋)) ∈ ℝ* ∧ 0 ≤ (1 / (𝐿𝑋)))) ∧ (𝑀‘(𝐹𝑋)) ≤ ((𝑁𝐹) ·e (𝐿𝑋))) → ((𝑀‘(𝐹𝑋)) ·e (1 / (𝐿𝑋))) ≤ (((𝑁𝐹) ·e (𝐿𝑋)) ·e (1 / (𝐿𝑋))))
3012, 22, 26, 28, 29syl31anc 1326 . 2 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → ((𝑀‘(𝐹𝑋)) ·e (1 / (𝐿𝑋))) ≤ (((𝑁𝐹) ·e (𝐿𝑋)) ·e (1 / (𝐿𝑋))))
3123rpred 11816 . . . 4 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → (1 / (𝐿𝑋)) ∈ ℝ)
32 rexmul 12044 . . . 4 (((𝑀‘(𝐹𝑋)) ∈ ℝ ∧ (1 / (𝐿𝑋)) ∈ ℝ) → ((𝑀‘(𝐹𝑋)) ·e (1 / (𝐿𝑋))) = ((𝑀‘(𝐹𝑋)) · (1 / (𝐿𝑋))))
3311, 31, 32syl2anc 692 . . 3 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → ((𝑀‘(𝐹𝑋)) ·e (1 / (𝐿𝑋))) = ((𝑀‘(𝐹𝑋)) · (1 / (𝐿𝑋))))
3411recnd 10012 . . . 4 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → (𝑀‘(𝐹𝑋)) ∈ ℂ)
3520rpcnd 11818 . . . 4 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → (𝐿𝑋) ∈ ℂ)
3620rpne0d 11821 . . . 4 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → (𝐿𝑋) ≠ 0)
3734, 35, 36divrecd 10748 . . 3 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → ((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) = ((𝑀‘(𝐹𝑋)) · (1 / (𝐿𝑋))))
3833, 37eqtr4d 2658 . 2 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → ((𝑀‘(𝐹𝑋)) ·e (1 / (𝐿𝑋))) = ((𝑀‘(𝐹𝑋)) / (𝐿𝑋)))
39 xmulass 12060 . . . 4 (((𝑁𝐹) ∈ ℝ* ∧ (𝐿𝑋) ∈ ℝ* ∧ (1 / (𝐿𝑋)) ∈ ℝ*) → (((𝑁𝐹) ·e (𝐿𝑋)) ·e (1 / (𝐿𝑋))) = ((𝑁𝐹) ·e ((𝐿𝑋) ·e (1 / (𝐿𝑋)))))
4015, 21, 24, 39syl3anc 1323 . . 3 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → (((𝑁𝐹) ·e (𝐿𝑋)) ·e (1 / (𝐿𝑋))) = ((𝑁𝐹) ·e ((𝐿𝑋) ·e (1 / (𝐿𝑋)))))
4120rpred 11816 . . . . . 6 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → (𝐿𝑋) ∈ ℝ)
42 rexmul 12044 . . . . . 6 (((𝐿𝑋) ∈ ℝ ∧ (1 / (𝐿𝑋)) ∈ ℝ) → ((𝐿𝑋) ·e (1 / (𝐿𝑋))) = ((𝐿𝑋) · (1 / (𝐿𝑋))))
4341, 31, 42syl2anc 692 . . . . 5 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → ((𝐿𝑋) ·e (1 / (𝐿𝑋))) = ((𝐿𝑋) · (1 / (𝐿𝑋))))
4435, 36recidd 10740 . . . . 5 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → ((𝐿𝑋) · (1 / (𝐿𝑋))) = 1)
4543, 44eqtrd 2655 . . . 4 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → ((𝐿𝑋) ·e (1 / (𝐿𝑋))) = 1)
4645oveq2d 6620 . . 3 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → ((𝑁𝐹) ·e ((𝐿𝑋) ·e (1 / (𝐿𝑋)))) = ((𝑁𝐹) ·e 1))
47 xmulid1 12052 . . . 4 ((𝑁𝐹) ∈ ℝ* → ((𝑁𝐹) ·e 1) = (𝑁𝐹))
4815, 47syl 17 . . 3 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → ((𝑁𝐹) ·e 1) = (𝑁𝐹))
4940, 46, 483eqtrd 2659 . 2 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → (((𝑁𝐹) ·e (𝐿𝑋)) ·e (1 / (𝐿𝑋))) = (𝑁𝐹))
5030, 38, 493brtr3d 4644 1 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → ((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ≤ (𝑁𝐹))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987   ≠ wne 2790   class class class wbr 4613  ⟶wf 5843  ‘cfv 5847  (class class class)co 6604  ℝcr 9879  0cc0 9880  1c1 9881   · cmul 9885  ℝ*cxr 10017   ≤ cle 10019   / cdiv 10628  ℝ+crp 11776   ·e cxmu 11889  Basecbs 15781  0gc0g 16021   GrpHom cghm 17578  normcnm 22291  NrmGrpcngp 22292   normOp cnmo 22419 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-sup 8292  df-inf 8293  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-n0 11237  df-z 11322  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ico 12123  df-0g 16023  df-topgen 16025  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-grp 17346  df-ghm 17579  df-psmet 19657  df-xmet 19658  df-met 19659  df-bl 19660  df-mopn 19661  df-top 20621  df-bases 20622  df-topon 20623  df-topsp 20624  df-xms 22035  df-ms 22036  df-nm 22297  df-ngp 22298  df-nmo 22422  df-nghm 22423 This theorem is referenced by:  nmoleub  22445
 Copyright terms: Public domain W3C validator