MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoid Structured version   Visualization version   GIF version

Theorem nmoid 22288
Description: The operator norm of the identity function on a nontrivial group. (Contributed by Mario Carneiro, 20-Oct-2015.)
Hypotheses
Ref Expression
nmoid.1 𝑁 = (𝑆 normOp 𝑆)
nmoid.2 𝑉 = (Base‘𝑆)
nmoid.3 0 = (0g𝑆)
Assertion
Ref Expression
nmoid ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → (𝑁‘( I ↾ 𝑉)) = 1)

Proof of Theorem nmoid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nmoid.1 . . 3 𝑁 = (𝑆 normOp 𝑆)
2 nmoid.2 . . 3 𝑉 = (Base‘𝑆)
3 eqid 2609 . . 3 (norm‘𝑆) = (norm‘𝑆)
4 nmoid.3 . . 3 0 = (0g𝑆)
5 simpl 471 . . 3 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → 𝑆 ∈ NrmGrp)
6 ngpgrp 22154 . . . . 5 (𝑆 ∈ NrmGrp → 𝑆 ∈ Grp)
76adantr 479 . . . 4 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → 𝑆 ∈ Grp)
82idghm 17444 . . . 4 (𝑆 ∈ Grp → ( I ↾ 𝑉) ∈ (𝑆 GrpHom 𝑆))
97, 8syl 17 . . 3 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → ( I ↾ 𝑉) ∈ (𝑆 GrpHom 𝑆))
10 1red 9911 . . 3 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → 1 ∈ ℝ)
11 0le1 10400 . . . 4 0 ≤ 1
1211a1i 11 . . 3 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → 0 ≤ 1)
132, 3nmcl 22170 . . . . . 6 ((𝑆 ∈ NrmGrp ∧ 𝑥𝑉) → ((norm‘𝑆)‘𝑥) ∈ ℝ)
1413ad2ant2r 778 . . . . 5 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → ((norm‘𝑆)‘𝑥) ∈ ℝ)
1514leidd 10443 . . . 4 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → ((norm‘𝑆)‘𝑥) ≤ ((norm‘𝑆)‘𝑥))
16 fvresi 6322 . . . . . 6 (𝑥𝑉 → (( I ↾ 𝑉)‘𝑥) = 𝑥)
1716ad2antrl 759 . . . . 5 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → (( I ↾ 𝑉)‘𝑥) = 𝑥)
1817fveq2d 6092 . . . 4 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → ((norm‘𝑆)‘(( I ↾ 𝑉)‘𝑥)) = ((norm‘𝑆)‘𝑥))
1914recnd 9924 . . . . 5 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → ((norm‘𝑆)‘𝑥) ∈ ℂ)
2019mulid2d 9914 . . . 4 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → (1 · ((norm‘𝑆)‘𝑥)) = ((norm‘𝑆)‘𝑥))
2115, 18, 203brtr4d 4609 . . 3 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → ((norm‘𝑆)‘(( I ↾ 𝑉)‘𝑥)) ≤ (1 · ((norm‘𝑆)‘𝑥)))
221, 2, 3, 3, 4, 5, 5, 9, 10, 12, 21nmolb2d 22264 . 2 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → (𝑁‘( I ↾ 𝑉)) ≤ 1)
23 pssnel 3990 . . . 4 ({ 0 } ⊊ 𝑉 → ∃𝑥(𝑥𝑉 ∧ ¬ 𝑥 ∈ { 0 }))
2423adantl 480 . . 3 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → ∃𝑥(𝑥𝑉 ∧ ¬ 𝑥 ∈ { 0 }))
25 velsn 4140 . . . . . 6 (𝑥 ∈ { 0 } ↔ 𝑥 = 0 )
2625biimpri 216 . . . . 5 (𝑥 = 0𝑥 ∈ { 0 })
2726necon3bi 2807 . . . 4 𝑥 ∈ { 0 } → 𝑥0 )
2820, 18eqtr4d 2646 . . . . . 6 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → (1 · ((norm‘𝑆)‘𝑥)) = ((norm‘𝑆)‘(( I ↾ 𝑉)‘𝑥)))
291nmocl 22266 . . . . . . . . . . 11 ((𝑆 ∈ NrmGrp ∧ 𝑆 ∈ NrmGrp ∧ ( I ↾ 𝑉) ∈ (𝑆 GrpHom 𝑆)) → (𝑁‘( I ↾ 𝑉)) ∈ ℝ*)
305, 5, 9, 29syl3anc 1317 . . . . . . . . . 10 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → (𝑁‘( I ↾ 𝑉)) ∈ ℝ*)
311nmoge0 22267 . . . . . . . . . . 11 ((𝑆 ∈ NrmGrp ∧ 𝑆 ∈ NrmGrp ∧ ( I ↾ 𝑉) ∈ (𝑆 GrpHom 𝑆)) → 0 ≤ (𝑁‘( I ↾ 𝑉)))
325, 5, 9, 31syl3anc 1317 . . . . . . . . . 10 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → 0 ≤ (𝑁‘( I ↾ 𝑉)))
33 xrrege0 11838 . . . . . . . . . 10 ((((𝑁‘( I ↾ 𝑉)) ∈ ℝ* ∧ 1 ∈ ℝ) ∧ (0 ≤ (𝑁‘( I ↾ 𝑉)) ∧ (𝑁‘( I ↾ 𝑉)) ≤ 1)) → (𝑁‘( I ↾ 𝑉)) ∈ ℝ)
3430, 10, 32, 22, 33syl22anc 1318 . . . . . . . . 9 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → (𝑁‘( I ↾ 𝑉)) ∈ ℝ)
351isnghm2 22270 . . . . . . . . . 10 ((𝑆 ∈ NrmGrp ∧ 𝑆 ∈ NrmGrp ∧ ( I ↾ 𝑉) ∈ (𝑆 GrpHom 𝑆)) → (( I ↾ 𝑉) ∈ (𝑆 NGHom 𝑆) ↔ (𝑁‘( I ↾ 𝑉)) ∈ ℝ))
365, 5, 9, 35syl3anc 1317 . . . . . . . . 9 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → (( I ↾ 𝑉) ∈ (𝑆 NGHom 𝑆) ↔ (𝑁‘( I ↾ 𝑉)) ∈ ℝ))
3734, 36mpbird 245 . . . . . . . 8 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → ( I ↾ 𝑉) ∈ (𝑆 NGHom 𝑆))
3837adantr 479 . . . . . . 7 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → ( I ↾ 𝑉) ∈ (𝑆 NGHom 𝑆))
39 simprl 789 . . . . . . 7 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → 𝑥𝑉)
401, 2, 3, 3nmoi 22274 . . . . . . 7 ((( I ↾ 𝑉) ∈ (𝑆 NGHom 𝑆) ∧ 𝑥𝑉) → ((norm‘𝑆)‘(( I ↾ 𝑉)‘𝑥)) ≤ ((𝑁‘( I ↾ 𝑉)) · ((norm‘𝑆)‘𝑥)))
4138, 39, 40syl2anc 690 . . . . . 6 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → ((norm‘𝑆)‘(( I ↾ 𝑉)‘𝑥)) ≤ ((𝑁‘( I ↾ 𝑉)) · ((norm‘𝑆)‘𝑥)))
4228, 41eqbrtrd 4599 . . . . 5 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → (1 · ((norm‘𝑆)‘𝑥)) ≤ ((𝑁‘( I ↾ 𝑉)) · ((norm‘𝑆)‘𝑥)))
43 1red 9911 . . . . . 6 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → 1 ∈ ℝ)
4434adantr 479 . . . . . 6 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → (𝑁‘( I ↾ 𝑉)) ∈ ℝ)
452, 3, 4nmrpcl 22174 . . . . . . . 8 ((𝑆 ∈ NrmGrp ∧ 𝑥𝑉𝑥0 ) → ((norm‘𝑆)‘𝑥) ∈ ℝ+)
46453expb 1257 . . . . . . 7 ((𝑆 ∈ NrmGrp ∧ (𝑥𝑉𝑥0 )) → ((norm‘𝑆)‘𝑥) ∈ ℝ+)
4746adantlr 746 . . . . . 6 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → ((norm‘𝑆)‘𝑥) ∈ ℝ+)
4843, 44, 47lemul1d 11747 . . . . 5 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → (1 ≤ (𝑁‘( I ↾ 𝑉)) ↔ (1 · ((norm‘𝑆)‘𝑥)) ≤ ((𝑁‘( I ↾ 𝑉)) · ((norm‘𝑆)‘𝑥))))
4942, 48mpbird 245 . . . 4 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉𝑥0 )) → 1 ≤ (𝑁‘( I ↾ 𝑉)))
5027, 49sylanr2 682 . . 3 (((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) ∧ (𝑥𝑉 ∧ ¬ 𝑥 ∈ { 0 })) → 1 ≤ (𝑁‘( I ↾ 𝑉)))
5124, 50exlimddv 1849 . 2 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → 1 ≤ (𝑁‘( I ↾ 𝑉)))
52 1re 9895 . . . 4 1 ∈ ℝ
5352rexri 9948 . . 3 1 ∈ ℝ*
54 xrletri3 11820 . . 3 (((𝑁‘( I ↾ 𝑉)) ∈ ℝ* ∧ 1 ∈ ℝ*) → ((𝑁‘( I ↾ 𝑉)) = 1 ↔ ((𝑁‘( I ↾ 𝑉)) ≤ 1 ∧ 1 ≤ (𝑁‘( I ↾ 𝑉)))))
5530, 53, 54sylancl 692 . 2 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → ((𝑁‘( I ↾ 𝑉)) = 1 ↔ ((𝑁‘( I ↾ 𝑉)) ≤ 1 ∧ 1 ≤ (𝑁‘( I ↾ 𝑉)))))
5622, 51, 55mpbir2and 958 1 ((𝑆 ∈ NrmGrp ∧ { 0 } ⊊ 𝑉) → (𝑁‘( I ↾ 𝑉)) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wa 382   = wceq 1474  wex 1694  wcel 1976  wne 2779  wpss 3540  {csn 4124   class class class wbr 4577   I cid 4938  cres 5030  cfv 5790  (class class class)co 6527  cr 9791  0cc0 9792  1c1 9793   · cmul 9797  *cxr 9929  cle 9931  +crp 11664  Basecbs 15641  0gc0g 15869  Grpcgrp 17191   GrpHom cghm 17426  normcnm 22132  NrmGrpcngp 22133   normOp cnmo 22251   NGHom cnghm 22252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-er 7606  df-map 7723  df-en 7819  df-dom 7820  df-sdom 7821  df-sup 8208  df-inf 8209  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10534  df-nn 10868  df-2 10926  df-n0 11140  df-z 11211  df-uz 11520  df-q 11621  df-rp 11665  df-xneg 11778  df-xadd 11779  df-xmul 11780  df-ico 12008  df-0g 15871  df-topgen 15873  df-mgm 17011  df-sgrp 17053  df-mnd 17064  df-grp 17194  df-ghm 17427  df-psmet 19505  df-xmet 19506  df-met 19507  df-bl 19508  df-mopn 19509  df-top 20463  df-bases 20464  df-topon 20465  df-topsp 20466  df-xms 21876  df-ms 21877  df-nm 22138  df-ngp 22139  df-nmo 22254  df-nghm 22255
This theorem is referenced by:  idnghm  22289
  Copyright terms: Public domain W3C validator