MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoleub Structured version   Visualization version   GIF version

Theorem nmoleub 22445
Description: The operator norm, defined as an infimum of upper bounds, can also be defined as a supremum of norms of 𝐹(𝑥) away from zero. (Contributed by Mario Carneiro, 18-Oct-2015.)
Hypotheses
Ref Expression
nmofval.1 𝑁 = (𝑆 normOp 𝑇)
nmoi.2 𝑉 = (Base‘𝑆)
nmoi.3 𝐿 = (norm‘𝑆)
nmoi.4 𝑀 = (norm‘𝑇)
nmoi2.z 0 = (0g𝑆)
nmoleub.1 (𝜑𝑆 ∈ NrmGrp)
nmoleub.2 (𝜑𝑇 ∈ NrmGrp)
nmoleub.3 (𝜑𝐹 ∈ (𝑆 GrpHom 𝑇))
nmoleub.4 (𝜑𝐴 ∈ ℝ*)
nmoleub.5 (𝜑 → 0 ≤ 𝐴)
Assertion
Ref Expression
nmoleub (𝜑 → ((𝑁𝐹) ≤ 𝐴 ↔ ∀𝑥𝑉 (𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴)))
Distinct variable groups:   𝑥,𝐿   𝑥,𝑀   𝑥,𝑆   𝑥,𝑇   𝑥,𝐴   𝑥,𝐹   𝜑,𝑥   𝑥,𝑉   𝑥,𝑁
Allowed substitution hint:   0 (𝑥)

Proof of Theorem nmoleub
StepHypRef Expression
1 nmoleub.2 . . . . . . . . 9 (𝜑𝑇 ∈ NrmGrp)
21ad2antrr 761 . . . . . . . 8 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉𝑥0 )) → 𝑇 ∈ NrmGrp)
3 nmoleub.3 . . . . . . . . . . 11 (𝜑𝐹 ∈ (𝑆 GrpHom 𝑇))
4 nmoi.2 . . . . . . . . . . . 12 𝑉 = (Base‘𝑆)
5 eqid 2621 . . . . . . . . . . . 12 (Base‘𝑇) = (Base‘𝑇)
64, 5ghmf 17585 . . . . . . . . . . 11 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑉⟶(Base‘𝑇))
73, 6syl 17 . . . . . . . . . 10 (𝜑𝐹:𝑉⟶(Base‘𝑇))
87ad2antrr 761 . . . . . . . . 9 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉𝑥0 )) → 𝐹:𝑉⟶(Base‘𝑇))
9 simprl 793 . . . . . . . . 9 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉𝑥0 )) → 𝑥𝑉)
10 ffvelrn 6313 . . . . . . . . 9 ((𝐹:𝑉⟶(Base‘𝑇) ∧ 𝑥𝑉) → (𝐹𝑥) ∈ (Base‘𝑇))
118, 9, 10syl2anc 692 . . . . . . . 8 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉𝑥0 )) → (𝐹𝑥) ∈ (Base‘𝑇))
12 nmoi.4 . . . . . . . . 9 𝑀 = (norm‘𝑇)
135, 12nmcl 22330 . . . . . . . 8 ((𝑇 ∈ NrmGrp ∧ (𝐹𝑥) ∈ (Base‘𝑇)) → (𝑀‘(𝐹𝑥)) ∈ ℝ)
142, 11, 13syl2anc 692 . . . . . . 7 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉𝑥0 )) → (𝑀‘(𝐹𝑥)) ∈ ℝ)
15 nmoleub.1 . . . . . . . . 9 (𝜑𝑆 ∈ NrmGrp)
1615adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) → 𝑆 ∈ NrmGrp)
17 nmoi.3 . . . . . . . . . 10 𝐿 = (norm‘𝑆)
18 nmoi2.z . . . . . . . . . 10 0 = (0g𝑆)
194, 17, 18nmrpcl 22334 . . . . . . . . 9 ((𝑆 ∈ NrmGrp ∧ 𝑥𝑉𝑥0 ) → (𝐿𝑥) ∈ ℝ+)
20193expb 1263 . . . . . . . 8 ((𝑆 ∈ NrmGrp ∧ (𝑥𝑉𝑥0 )) → (𝐿𝑥) ∈ ℝ+)
2116, 20sylan 488 . . . . . . 7 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉𝑥0 )) → (𝐿𝑥) ∈ ℝ+)
2214, 21rerpdivcld 11847 . . . . . 6 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉𝑥0 )) → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ∈ ℝ)
2322rexrd 10033 . . . . 5 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉𝑥0 )) → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ∈ ℝ*)
24 nmofval.1 . . . . . . . 8 𝑁 = (𝑆 normOp 𝑇)
2524nmocl 22434 . . . . . . 7 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝑁𝐹) ∈ ℝ*)
2615, 1, 3, 25syl3anc 1323 . . . . . 6 (𝜑 → (𝑁𝐹) ∈ ℝ*)
2726ad2antrr 761 . . . . 5 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉𝑥0 )) → (𝑁𝐹) ∈ ℝ*)
28 nmoleub.4 . . . . . 6 (𝜑𝐴 ∈ ℝ*)
2928ad2antrr 761 . . . . 5 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉𝑥0 )) → 𝐴 ∈ ℝ*)
3015, 1, 33jca 1240 . . . . . . 7 (𝜑 → (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)))
3130adantr 481 . . . . . 6 ((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) → (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)))
3224, 4, 17, 12, 18nmoi2 22444 . . . . . 6 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑥𝑉𝑥0 )) → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ (𝑁𝐹))
3331, 32sylan 488 . . . . 5 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉𝑥0 )) → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ (𝑁𝐹))
34 simplr 791 . . . . 5 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉𝑥0 )) → (𝑁𝐹) ≤ 𝐴)
3523, 27, 29, 33, 34xrletrd 11937 . . . 4 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉𝑥0 )) → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴)
3635expr 642 . . 3 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ 𝑥𝑉) → (𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴))
3736ralrimiva 2960 . 2 ((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) → ∀𝑥𝑉 (𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴))
38 0le0 11054 . . . . . . . . . . 11 0 ≤ 0
39 simpllr 798 . . . . . . . . . . . . 13 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥 = 0 ) → 𝐴 ∈ ℝ)
4039recnd 10012 . . . . . . . . . . . 12 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥 = 0 ) → 𝐴 ∈ ℂ)
4140mul01d 10179 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥 = 0 ) → (𝐴 · 0) = 0)
4238, 41syl5breqr 4651 . . . . . . . . . 10 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥 = 0 ) → 0 ≤ (𝐴 · 0))
43 fveq2 6148 . . . . . . . . . . . . 13 (𝑥 = 0 → (𝐹𝑥) = (𝐹0 ))
443ad2antrr 761 . . . . . . . . . . . . . 14 (((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
45 eqid 2621 . . . . . . . . . . . . . . 15 (0g𝑇) = (0g𝑇)
4618, 45ghmid 17587 . . . . . . . . . . . . . 14 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹0 ) = (0g𝑇))
4744, 46syl 17 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) → (𝐹0 ) = (0g𝑇))
4843, 47sylan9eqr 2677 . . . . . . . . . . . 12 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥 = 0 ) → (𝐹𝑥) = (0g𝑇))
4948fveq2d 6152 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥 = 0 ) → (𝑀‘(𝐹𝑥)) = (𝑀‘(0g𝑇)))
501ad3antrrr 765 . . . . . . . . . . . 12 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥 = 0 ) → 𝑇 ∈ NrmGrp)
5112, 45nm0 22343 . . . . . . . . . . . 12 (𝑇 ∈ NrmGrp → (𝑀‘(0g𝑇)) = 0)
5250, 51syl 17 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥 = 0 ) → (𝑀‘(0g𝑇)) = 0)
5349, 52eqtrd 2655 . . . . . . . . . 10 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥 = 0 ) → (𝑀‘(𝐹𝑥)) = 0)
54 fveq2 6148 . . . . . . . . . . . 12 (𝑥 = 0 → (𝐿𝑥) = (𝐿0 ))
5515ad2antrr 761 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) → 𝑆 ∈ NrmGrp)
5617, 18nm0 22343 . . . . . . . . . . . . 13 (𝑆 ∈ NrmGrp → (𝐿0 ) = 0)
5755, 56syl 17 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) → (𝐿0 ) = 0)
5854, 57sylan9eqr 2677 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥 = 0 ) → (𝐿𝑥) = 0)
5958oveq2d 6620 . . . . . . . . . 10 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥 = 0 ) → (𝐴 · (𝐿𝑥)) = (𝐴 · 0))
6042, 53, 593brtr4d 4645 . . . . . . . . 9 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥 = 0 ) → (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥)))
6160a1d 25 . . . . . . . 8 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥 = 0 ) → ((𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴) → (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥))))
62 simpr 477 . . . . . . . . 9 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥0 ) → 𝑥0 )
631ad2antrr 761 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) → 𝑇 ∈ NrmGrp)
647adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝐴 ∈ ℝ) → 𝐹:𝑉⟶(Base‘𝑇))
6564, 10sylan 488 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) → (𝐹𝑥) ∈ (Base‘𝑇))
6663, 65, 13syl2anc 692 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) → (𝑀‘(𝐹𝑥)) ∈ ℝ)
6766adantr 481 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥0 ) → (𝑀‘(𝐹𝑥)) ∈ ℝ)
68 simpllr 798 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥0 ) → 𝐴 ∈ ℝ)
6915adantr 481 . . . . . . . . . . . 12 ((𝜑𝐴 ∈ ℝ) → 𝑆 ∈ NrmGrp)
70193expa 1262 . . . . . . . . . . . 12 (((𝑆 ∈ NrmGrp ∧ 𝑥𝑉) ∧ 𝑥0 ) → (𝐿𝑥) ∈ ℝ+)
7169, 70sylanl1 681 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥0 ) → (𝐿𝑥) ∈ ℝ+)
7267, 68, 71ledivmul2d 11870 . . . . . . . . . 10 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥0 ) → (((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴 ↔ (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥))))
7372biimpd 219 . . . . . . . . 9 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥0 ) → (((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴 → (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥))))
7462, 73embantd 59 . . . . . . . 8 ((((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) ∧ 𝑥0 ) → ((𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴) → (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥))))
7561, 74pm2.61dane 2877 . . . . . . 7 (((𝜑𝐴 ∈ ℝ) ∧ 𝑥𝑉) → ((𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴) → (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥))))
7675ralimdva 2956 . . . . . 6 ((𝜑𝐴 ∈ ℝ) → (∀𝑥𝑉 (𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴) → ∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥))))
771adantr 481 . . . . . . 7 ((𝜑𝐴 ∈ ℝ) → 𝑇 ∈ NrmGrp)
783adantr 481 . . . . . . 7 ((𝜑𝐴 ∈ ℝ) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
79 simpr 477 . . . . . . 7 ((𝜑𝐴 ∈ ℝ) → 𝐴 ∈ ℝ)
80 nmoleub.5 . . . . . . . 8 (𝜑 → 0 ≤ 𝐴)
8180adantr 481 . . . . . . 7 ((𝜑𝐴 ∈ ℝ) → 0 ≤ 𝐴)
8224, 4, 17, 12nmolb 22431 . . . . . . 7 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥)) → (𝑁𝐹) ≤ 𝐴))
8369, 77, 78, 79, 81, 82syl311anc 1337 . . . . . 6 ((𝜑𝐴 ∈ ℝ) → (∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝐴 · (𝐿𝑥)) → (𝑁𝐹) ≤ 𝐴))
8476, 83syld 47 . . . . 5 ((𝜑𝐴 ∈ ℝ) → (∀𝑥𝑉 (𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴) → (𝑁𝐹) ≤ 𝐴))
8584imp 445 . . . 4 (((𝜑𝐴 ∈ ℝ) ∧ ∀𝑥𝑉 (𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴)) → (𝑁𝐹) ≤ 𝐴)
8685an32s 845 . . 3 (((𝜑 ∧ ∀𝑥𝑉 (𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) → (𝑁𝐹) ≤ 𝐴)
8726ad2antrr 761 . . . . 5 (((𝜑 ∧ ∀𝑥𝑉 (𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴)) ∧ 𝐴 = +∞) → (𝑁𝐹) ∈ ℝ*)
88 pnfge 11908 . . . . 5 ((𝑁𝐹) ∈ ℝ* → (𝑁𝐹) ≤ +∞)
8987, 88syl 17 . . . 4 (((𝜑 ∧ ∀𝑥𝑉 (𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴)) ∧ 𝐴 = +∞) → (𝑁𝐹) ≤ +∞)
90 simpr 477 . . . 4 (((𝜑 ∧ ∀𝑥𝑉 (𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴)) ∧ 𝐴 = +∞) → 𝐴 = +∞)
9189, 90breqtrrd 4641 . . 3 (((𝜑 ∧ ∀𝑥𝑉 (𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴)) ∧ 𝐴 = +∞) → (𝑁𝐹) ≤ 𝐴)
92 ge0nemnf 11947 . . . . . . 7 ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 𝐴 ≠ -∞)
9328, 80, 92syl2anc 692 . . . . . 6 (𝜑𝐴 ≠ -∞)
9428, 93jca 554 . . . . 5 (𝜑 → (𝐴 ∈ ℝ*𝐴 ≠ -∞))
95 xrnemnf 11895 . . . . 5 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞))
9694, 95sylib 208 . . . 4 (𝜑 → (𝐴 ∈ ℝ ∨ 𝐴 = +∞))
9796adantr 481 . . 3 ((𝜑 ∧ ∀𝑥𝑉 (𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴)) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞))
9886, 91, 97mpjaodan 826 . 2 ((𝜑 ∧ ∀𝑥𝑉 (𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴)) → (𝑁𝐹) ≤ 𝐴)
9937, 98impbida 876 1 (𝜑 → ((𝑁𝐹) ≤ 𝐴 ↔ ∀𝑥𝑉 (𝑥0 → ((𝑀‘(𝐹𝑥)) / (𝐿𝑥)) ≤ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wral 2907   class class class wbr 4613  wf 5843  cfv 5847  (class class class)co 6604  cr 9879  0cc0 9880   · cmul 9885  +∞cpnf 10015  -∞cmnf 10016  *cxr 10017  cle 10019   / cdiv 10628  +crp 11776  Basecbs 15781  0gc0g 16021   GrpHom cghm 17578  normcnm 22291  NrmGrpcngp 22292   normOp cnmo 22419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-sup 8292  df-inf 8293  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-n0 11237  df-z 11322  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ico 12123  df-0g 16023  df-topgen 16025  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-grp 17346  df-ghm 17579  df-psmet 19657  df-xmet 19658  df-met 19659  df-bl 19660  df-mopn 19661  df-top 20621  df-bases 20622  df-topon 20623  df-topsp 20624  df-xms 22035  df-ms 22036  df-nm 22297  df-ngp 22298  df-nmo 22422  df-nghm 22423
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator