MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoleub3 Structured version   Visualization version   GIF version

Theorem nmoleub3 22822
Description: The operator norm is the supremum of the value of a linear operator on the closed unit sphere. (Contributed by Mario Carneiro, 19-Oct-2015.) (Proof shortened by AV, 29-Sep-2021.)
Hypotheses
Ref Expression
nmoleub2.n 𝑁 = (𝑆 normOp 𝑇)
nmoleub2.v 𝑉 = (Base‘𝑆)
nmoleub2.l 𝐿 = (norm‘𝑆)
nmoleub2.m 𝑀 = (norm‘𝑇)
nmoleub2.g 𝐺 = (Scalar‘𝑆)
nmoleub2.w 𝐾 = (Base‘𝐺)
nmoleub2.s (𝜑𝑆 ∈ (NrmMod ∩ ℂMod))
nmoleub2.t (𝜑𝑇 ∈ (NrmMod ∩ ℂMod))
nmoleub2.f (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
nmoleub2.a (𝜑𝐴 ∈ ℝ*)
nmoleub2.r (𝜑𝑅 ∈ ℝ+)
nmoleub3.5 (𝜑 → 0 ≤ 𝐴)
nmoleub3.6 (𝜑 → ℝ ⊆ 𝐾)
Assertion
Ref Expression
nmoleub3 (𝜑 → ((𝑁𝐹) ≤ 𝐴 ↔ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐿   𝑥,𝑁   𝑥,𝑀   𝜑,𝑥   𝑥,𝑆   𝑥,𝑉   𝑥,𝑅
Allowed substitution hints:   𝑇(𝑥)   𝐺(𝑥)   𝐾(𝑥)

Proof of Theorem nmoleub3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nmoleub2.n . 2 𝑁 = (𝑆 normOp 𝑇)
2 nmoleub2.v . 2 𝑉 = (Base‘𝑆)
3 nmoleub2.l . 2 𝐿 = (norm‘𝑆)
4 nmoleub2.m . 2 𝑀 = (norm‘𝑇)
5 nmoleub2.g . 2 𝐺 = (Scalar‘𝑆)
6 nmoleub2.w . 2 𝐾 = (Base‘𝐺)
7 nmoleub2.s . 2 (𝜑𝑆 ∈ (NrmMod ∩ ℂMod))
8 nmoleub2.t . 2 (𝜑𝑇 ∈ (NrmMod ∩ ℂMod))
9 nmoleub2.f . 2 (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
10 nmoleub2.a . 2 (𝜑𝐴 ∈ ℝ*)
11 nmoleub2.r . 2 (𝜑𝑅 ∈ ℝ+)
12 nmoleub3.5 . . 3 (𝜑 → 0 ≤ 𝐴)
1312adantr 481 . 2 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → 0 ≤ 𝐴)
149ad3antrrr 765 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → 𝐹 ∈ (𝑆 LMHom 𝑇))
15 nmoleub3.6 . . . . . . . . . . 11 (𝜑 → ℝ ⊆ 𝐾)
1615ad3antrrr 765 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → ℝ ⊆ 𝐾)
1711ad3antrrr 765 . . . . . . . . . . . 12 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → 𝑅 ∈ ℝ+)
187elin1d 3785 . . . . . . . . . . . . . . 15 (𝜑𝑆 ∈ NrmMod)
1918ad3antrrr 765 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → 𝑆 ∈ NrmMod)
20 nlmngp 22386 . . . . . . . . . . . . . 14 (𝑆 ∈ NrmMod → 𝑆 ∈ NrmGrp)
2119, 20syl 17 . . . . . . . . . . . . 13 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → 𝑆 ∈ NrmGrp)
22 simprl 793 . . . . . . . . . . . . 13 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → 𝑦𝑉)
23 simprr 795 . . . . . . . . . . . . 13 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → 𝑦 ≠ (0g𝑆))
24 eqid 2626 . . . . . . . . . . . . . 14 (0g𝑆) = (0g𝑆)
252, 3, 24nmrpcl 22329 . . . . . . . . . . . . 13 ((𝑆 ∈ NrmGrp ∧ 𝑦𝑉𝑦 ≠ (0g𝑆)) → (𝐿𝑦) ∈ ℝ+)
2621, 22, 23, 25syl3anc 1323 . . . . . . . . . . . 12 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝐿𝑦) ∈ ℝ+)
2717, 26rpdivcld 11833 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝑅 / (𝐿𝑦)) ∈ ℝ+)
2827rpred 11816 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝑅 / (𝐿𝑦)) ∈ ℝ)
2916, 28sseldd 3589 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝑅 / (𝐿𝑦)) ∈ 𝐾)
30 eqid 2626 . . . . . . . . . 10 ( ·𝑠𝑆) = ( ·𝑠𝑆)
31 eqid 2626 . . . . . . . . . 10 ( ·𝑠𝑇) = ( ·𝑠𝑇)
325, 6, 2, 30, 31lmhmlin 18949 . . . . . . . . 9 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ (𝑅 / (𝐿𝑦)) ∈ 𝐾𝑦𝑉) → (𝐹‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦)) = ((𝑅 / (𝐿𝑦))( ·𝑠𝑇)(𝐹𝑦)))
3314, 29, 22, 32syl3anc 1323 . . . . . . . 8 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝐹‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦)) = ((𝑅 / (𝐿𝑦))( ·𝑠𝑇)(𝐹𝑦)))
3433fveq2d 6154 . . . . . . 7 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝑀‘(𝐹‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦))) = (𝑀‘((𝑅 / (𝐿𝑦))( ·𝑠𝑇)(𝐹𝑦))))
358elin1d 3785 . . . . . . . . 9 (𝜑𝑇 ∈ NrmMod)
3635ad3antrrr 765 . . . . . . . 8 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → 𝑇 ∈ NrmMod)
37 eqid 2626 . . . . . . . . . . . . 13 (Scalar‘𝑇) = (Scalar‘𝑇)
385, 37lmhmsca 18944 . . . . . . . . . . . 12 (𝐹 ∈ (𝑆 LMHom 𝑇) → (Scalar‘𝑇) = 𝐺)
3914, 38syl 17 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (Scalar‘𝑇) = 𝐺)
4039fveq2d 6154 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (Base‘(Scalar‘𝑇)) = (Base‘𝐺))
4140, 6syl6eqr 2678 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (Base‘(Scalar‘𝑇)) = 𝐾)
4229, 41eleqtrrd 2707 . . . . . . . 8 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝑅 / (𝐿𝑦)) ∈ (Base‘(Scalar‘𝑇)))
43 eqid 2626 . . . . . . . . . . 11 (Base‘𝑇) = (Base‘𝑇)
442, 43lmhmf 18948 . . . . . . . . . 10 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:𝑉⟶(Base‘𝑇))
4514, 44syl 17 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → 𝐹:𝑉⟶(Base‘𝑇))
4645, 22ffvelrnd 6317 . . . . . . . 8 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝐹𝑦) ∈ (Base‘𝑇))
47 eqid 2626 . . . . . . . . 9 (Base‘(Scalar‘𝑇)) = (Base‘(Scalar‘𝑇))
48 eqid 2626 . . . . . . . . 9 (norm‘(Scalar‘𝑇)) = (norm‘(Scalar‘𝑇))
4943, 4, 31, 37, 47, 48nmvs 22385 . . . . . . . 8 ((𝑇 ∈ NrmMod ∧ (𝑅 / (𝐿𝑦)) ∈ (Base‘(Scalar‘𝑇)) ∧ (𝐹𝑦) ∈ (Base‘𝑇)) → (𝑀‘((𝑅 / (𝐿𝑦))( ·𝑠𝑇)(𝐹𝑦))) = (((norm‘(Scalar‘𝑇))‘(𝑅 / (𝐿𝑦))) · (𝑀‘(𝐹𝑦))))
5036, 42, 46, 49syl3anc 1323 . . . . . . 7 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝑀‘((𝑅 / (𝐿𝑦))( ·𝑠𝑇)(𝐹𝑦))) = (((norm‘(Scalar‘𝑇))‘(𝑅 / (𝐿𝑦))) · (𝑀‘(𝐹𝑦))))
5139fveq2d 6154 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (norm‘(Scalar‘𝑇)) = (norm‘𝐺))
5251fveq1d 6152 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → ((norm‘(Scalar‘𝑇))‘(𝑅 / (𝐿𝑦))) = ((norm‘𝐺)‘(𝑅 / (𝐿𝑦))))
537elin2d 3786 . . . . . . . . . . . 12 (𝜑𝑆 ∈ ℂMod)
5453ad3antrrr 765 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → 𝑆 ∈ ℂMod)
555, 6clmabs 22786 . . . . . . . . . . 11 ((𝑆 ∈ ℂMod ∧ (𝑅 / (𝐿𝑦)) ∈ 𝐾) → (abs‘(𝑅 / (𝐿𝑦))) = ((norm‘𝐺)‘(𝑅 / (𝐿𝑦))))
5654, 29, 55syl2anc 692 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (abs‘(𝑅 / (𝐿𝑦))) = ((norm‘𝐺)‘(𝑅 / (𝐿𝑦))))
5727rpge0d 11820 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → 0 ≤ (𝑅 / (𝐿𝑦)))
5828, 57absidd 14090 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (abs‘(𝑅 / (𝐿𝑦))) = (𝑅 / (𝐿𝑦)))
5956, 58eqtr3d 2662 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → ((norm‘𝐺)‘(𝑅 / (𝐿𝑦))) = (𝑅 / (𝐿𝑦)))
6052, 59eqtrd 2660 . . . . . . . 8 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → ((norm‘(Scalar‘𝑇))‘(𝑅 / (𝐿𝑦))) = (𝑅 / (𝐿𝑦)))
6160oveq1d 6620 . . . . . . 7 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (((norm‘(Scalar‘𝑇))‘(𝑅 / (𝐿𝑦))) · (𝑀‘(𝐹𝑦))) = ((𝑅 / (𝐿𝑦)) · (𝑀‘(𝐹𝑦))))
6234, 50, 613eqtrd 2664 . . . . . 6 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝑀‘(𝐹‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦))) = ((𝑅 / (𝐿𝑦)) · (𝑀‘(𝐹𝑦))))
6362oveq1d 6620 . . . . 5 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → ((𝑀‘(𝐹‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦))) / 𝑅) = (((𝑅 / (𝐿𝑦)) · (𝑀‘(𝐹𝑦))) / 𝑅))
6427rpcnd 11818 . . . . . 6 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝑅 / (𝐿𝑦)) ∈ ℂ)
65 nlmngp 22386 . . . . . . . . 9 (𝑇 ∈ NrmMod → 𝑇 ∈ NrmGrp)
6636, 65syl 17 . . . . . . . 8 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → 𝑇 ∈ NrmGrp)
6743, 4nmcl 22325 . . . . . . . 8 ((𝑇 ∈ NrmGrp ∧ (𝐹𝑦) ∈ (Base‘𝑇)) → (𝑀‘(𝐹𝑦)) ∈ ℝ)
6866, 46, 67syl2anc 692 . . . . . . 7 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝑀‘(𝐹𝑦)) ∈ ℝ)
6968recnd 10013 . . . . . 6 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝑀‘(𝐹𝑦)) ∈ ℂ)
7017rpcnd 11818 . . . . . 6 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → 𝑅 ∈ ℂ)
7117rpne0d 11821 . . . . . 6 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → 𝑅 ≠ 0)
7264, 69, 70, 71divassd 10781 . . . . 5 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (((𝑅 / (𝐿𝑦)) · (𝑀‘(𝐹𝑦))) / 𝑅) = ((𝑅 / (𝐿𝑦)) · ((𝑀‘(𝐹𝑦)) / 𝑅)))
7326rpcnd 11818 . . . . . 6 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝐿𝑦) ∈ ℂ)
7426rpne0d 11821 . . . . . 6 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝐿𝑦) ≠ 0)
7569, 70, 73, 71, 74dmdcand 10775 . . . . 5 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → ((𝑅 / (𝐿𝑦)) · ((𝑀‘(𝐹𝑦)) / 𝑅)) = ((𝑀‘(𝐹𝑦)) / (𝐿𝑦)))
7663, 72, 753eqtrd 2664 . . . 4 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → ((𝑀‘(𝐹‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦))) / 𝑅) = ((𝑀‘(𝐹𝑦)) / (𝐿𝑦)))
772, 5, 30, 6clmvscl 22791 . . . . . 6 ((𝑆 ∈ ℂMod ∧ (𝑅 / (𝐿𝑦)) ∈ 𝐾𝑦𝑉) → ((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦) ∈ 𝑉)
7854, 29, 22, 77syl3anc 1323 . . . . 5 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → ((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦) ∈ 𝑉)
79 simpllr 798 . . . . 5 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴))
80 eqid 2626 . . . . . . . 8 (norm‘𝐺) = (norm‘𝐺)
812, 3, 30, 5, 6, 80nmvs 22385 . . . . . . 7 ((𝑆 ∈ NrmMod ∧ (𝑅 / (𝐿𝑦)) ∈ 𝐾𝑦𝑉) → (𝐿‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦)) = (((norm‘𝐺)‘(𝑅 / (𝐿𝑦))) · (𝐿𝑦)))
8219, 29, 22, 81syl3anc 1323 . . . . . 6 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝐿‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦)) = (((norm‘𝐺)‘(𝑅 / (𝐿𝑦))) · (𝐿𝑦)))
8359oveq1d 6620 . . . . . 6 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (((norm‘𝐺)‘(𝑅 / (𝐿𝑦))) · (𝐿𝑦)) = ((𝑅 / (𝐿𝑦)) · (𝐿𝑦)))
8470, 73, 74divcan1d 10747 . . . . . 6 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → ((𝑅 / (𝐿𝑦)) · (𝐿𝑦)) = 𝑅)
8582, 83, 843eqtrd 2664 . . . . 5 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝐿‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦)) = 𝑅)
86 fveq2 6150 . . . . . . . 8 (𝑥 = ((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦) → (𝐿𝑥) = (𝐿‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦)))
8786eqeq1d 2628 . . . . . . 7 (𝑥 = ((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦) → ((𝐿𝑥) = 𝑅 ↔ (𝐿‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦)) = 𝑅))
88 fveq2 6150 . . . . . . . . . 10 (𝑥 = ((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦) → (𝐹𝑥) = (𝐹‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦)))
8988fveq2d 6154 . . . . . . . . 9 (𝑥 = ((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦) → (𝑀‘(𝐹𝑥)) = (𝑀‘(𝐹‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦))))
9089oveq1d 6620 . . . . . . . 8 (𝑥 = ((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦) → ((𝑀‘(𝐹𝑥)) / 𝑅) = ((𝑀‘(𝐹‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦))) / 𝑅))
9190breq1d 4628 . . . . . . 7 (𝑥 = ((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦) → (((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴 ↔ ((𝑀‘(𝐹‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦))) / 𝑅) ≤ 𝐴))
9287, 91imbi12d 334 . . . . . 6 (𝑥 = ((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦) → (((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴) ↔ ((𝐿‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦)) = 𝑅 → ((𝑀‘(𝐹‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦))) / 𝑅) ≤ 𝐴)))
9392rspcv 3296 . . . . 5 (((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦) ∈ 𝑉 → (∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴) → ((𝐿‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦)) = 𝑅 → ((𝑀‘(𝐹‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦))) / 𝑅) ≤ 𝐴)))
9478, 79, 85, 93syl3c 66 . . . 4 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → ((𝑀‘(𝐹‘((𝑅 / (𝐿𝑦))( ·𝑠𝑆)𝑦))) / 𝑅) ≤ 𝐴)
9576, 94eqbrtrrd 4642 . . 3 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → ((𝑀‘(𝐹𝑦)) / (𝐿𝑦)) ≤ 𝐴)
96 simplr 791 . . . 4 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → 𝐴 ∈ ℝ)
9768, 96, 26ledivmul2d 11870 . . 3 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (((𝑀‘(𝐹𝑦)) / (𝐿𝑦)) ≤ 𝐴 ↔ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))))
9895, 97mpbid 222 . 2 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦)))
9911adantr 481 . . . . 5 ((𝜑𝑥𝑉) → 𝑅 ∈ ℝ+)
10099rpred 11816 . . . 4 ((𝜑𝑥𝑉) → 𝑅 ∈ ℝ)
101100leidd 10539 . . 3 ((𝜑𝑥𝑉) → 𝑅𝑅)
102 breq1 4621 . . 3 ((𝐿𝑥) = 𝑅 → ((𝐿𝑥) ≤ 𝑅𝑅𝑅))
103101, 102syl5ibrcom 237 . 2 ((𝜑𝑥𝑉) → ((𝐿𝑥) = 𝑅 → (𝐿𝑥) ≤ 𝑅))
1041, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 98, 103nmoleub2lem 22817 1 (𝜑 → ((𝑁𝐹) ≤ 𝐴 ↔ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1992  wne 2796  wral 2912  cin 3559  wss 3560   class class class wbr 4618  wf 5846  cfv 5850  (class class class)co 6605  cr 9880  0cc0 9881   · cmul 9886  *cxr 10018  cle 10020   / cdiv 10629  +crp 11776  abscabs 13903  Basecbs 15776  Scalarcsca 15860   ·𝑠 cvsca 15861  0gc0g 16016   LMHom clmhm 18933  normcnm 22286  NrmGrpcngp 22287  NrmModcnlm 22290   normOp cnmo 22414  ℂModcclm 22765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-pre-sup 9959  ax-addf 9960  ax-mulf 9961
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-oadd 7510  df-er 7688  df-map 7805  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-sup 8293  df-inf 8294  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-nn 10966  df-2 11024  df-3 11025  df-4 11026  df-5 11027  df-6 11028  df-7 11029  df-8 11030  df-9 11031  df-n0 11238  df-z 11323  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ico 12120  df-fz 12266  df-seq 12739  df-exp 12798  df-cj 13768  df-re 13769  df-im 13770  df-sqrt 13904  df-abs 13905  df-struct 15778  df-ndx 15779  df-slot 15780  df-base 15781  df-sets 15782  df-ress 15783  df-plusg 15870  df-mulr 15871  df-starv 15872  df-tset 15876  df-ple 15877  df-ds 15880  df-unif 15881  df-0g 16018  df-topgen 16020  df-mgm 17158  df-sgrp 17200  df-mnd 17211  df-grp 17341  df-subg 17507  df-ghm 17574  df-cmn 18111  df-mgp 18406  df-ring 18465  df-cring 18466  df-subrg 18694  df-lmod 18781  df-lmhm 18936  df-psmet 19652  df-xmet 19653  df-met 19654  df-bl 19655  df-mopn 19656  df-cnfld 19661  df-top 20616  df-bases 20617  df-topon 20618  df-topsp 20619  df-xms 22030  df-ms 22031  df-nm 22292  df-ngp 22293  df-nlm 22296  df-nmo 22417  df-nghm 22418  df-clm 22766
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator