MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoo0 Structured version   Visualization version   GIF version

Theorem nmoo0 27534
Description: The operator norm of the zero operator. (Contributed by NM, 27-Nov-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoo0.3 𝑁 = (𝑈 normOpOLD 𝑊)
nmoo0.0 𝑍 = (𝑈 0op 𝑊)
Assertion
Ref Expression
nmoo0 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑁𝑍) = 0)

Proof of Theorem nmoo0
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2621 . . . . 5 (BaseSet‘𝑈) = (BaseSet‘𝑈)
2 eqid 2621 . . . . 5 (BaseSet‘𝑊) = (BaseSet‘𝑊)
3 nmoo0.0 . . . . 5 𝑍 = (𝑈 0op 𝑊)
41, 2, 30oo 27532 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑍:(BaseSet‘𝑈)⟶(BaseSet‘𝑊))
5 eqid 2621 . . . . 5 (normCV𝑈) = (normCV𝑈)
6 eqid 2621 . . . . 5 (normCV𝑊) = (normCV𝑊)
7 nmoo0.3 . . . . 5 𝑁 = (𝑈 normOpOLD 𝑊)
81, 2, 5, 6, 7nmooval 27506 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑍:(BaseSet‘𝑈)⟶(BaseSet‘𝑊)) → (𝑁𝑍) = sup({𝑥 ∣ ∃𝑧 ∈ (BaseSet‘𝑈)(((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑍𝑧)))}, ℝ*, < ))
94, 8mpd3an3 1422 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑁𝑍) = sup({𝑥 ∣ ∃𝑧 ∈ (BaseSet‘𝑈)(((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑍𝑧)))}, ℝ*, < ))
10 df-sn 4156 . . . . 5 {0} = {𝑥𝑥 = 0}
11 eqid 2621 . . . . . . . . . . 11 (0vec𝑈) = (0vec𝑈)
121, 11nvzcl 27377 . . . . . . . . . 10 (𝑈 ∈ NrmCVec → (0vec𝑈) ∈ (BaseSet‘𝑈))
1311, 5nvz0 27411 . . . . . . . . . . 11 (𝑈 ∈ NrmCVec → ((normCV𝑈)‘(0vec𝑈)) = 0)
14 0le1 10511 . . . . . . . . . . 11 0 ≤ 1
1513, 14syl6eqbr 4662 . . . . . . . . . 10 (𝑈 ∈ NrmCVec → ((normCV𝑈)‘(0vec𝑈)) ≤ 1)
16 fveq2 6158 . . . . . . . . . . . 12 (𝑧 = (0vec𝑈) → ((normCV𝑈)‘𝑧) = ((normCV𝑈)‘(0vec𝑈)))
1716breq1d 4633 . . . . . . . . . . 11 (𝑧 = (0vec𝑈) → (((normCV𝑈)‘𝑧) ≤ 1 ↔ ((normCV𝑈)‘(0vec𝑈)) ≤ 1))
1817rspcev 3299 . . . . . . . . . 10 (((0vec𝑈) ∈ (BaseSet‘𝑈) ∧ ((normCV𝑈)‘(0vec𝑈)) ≤ 1) → ∃𝑧 ∈ (BaseSet‘𝑈)((normCV𝑈)‘𝑧) ≤ 1)
1912, 15, 18syl2anc 692 . . . . . . . . 9 (𝑈 ∈ NrmCVec → ∃𝑧 ∈ (BaseSet‘𝑈)((normCV𝑈)‘𝑧) ≤ 1)
2019biantrurd 529 . . . . . . . 8 (𝑈 ∈ NrmCVec → (𝑥 = 0 ↔ (∃𝑧 ∈ (BaseSet‘𝑈)((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = 0)))
2120adantr 481 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑥 = 0 ↔ (∃𝑧 ∈ (BaseSet‘𝑈)((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = 0)))
22 eqid 2621 . . . . . . . . . . . . . . 15 (0vec𝑊) = (0vec𝑊)
231, 22, 30oval 27531 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑧 ∈ (BaseSet‘𝑈)) → (𝑍𝑧) = (0vec𝑊))
24233expa 1262 . . . . . . . . . . . . 13 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → (𝑍𝑧) = (0vec𝑊))
2524fveq2d 6162 . . . . . . . . . . . 12 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → ((normCV𝑊)‘(𝑍𝑧)) = ((normCV𝑊)‘(0vec𝑊)))
2622, 6nvz0 27411 . . . . . . . . . . . . 13 (𝑊 ∈ NrmCVec → ((normCV𝑊)‘(0vec𝑊)) = 0)
2726ad2antlr 762 . . . . . . . . . . . 12 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → ((normCV𝑊)‘(0vec𝑊)) = 0)
2825, 27eqtrd 2655 . . . . . . . . . . 11 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → ((normCV𝑊)‘(𝑍𝑧)) = 0)
2928eqeq2d 2631 . . . . . . . . . 10 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → (𝑥 = ((normCV𝑊)‘(𝑍𝑧)) ↔ 𝑥 = 0))
3029anbi2d 739 . . . . . . . . 9 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → ((((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑍𝑧))) ↔ (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = 0)))
3130rexbidva 3044 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (∃𝑧 ∈ (BaseSet‘𝑈)(((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑍𝑧))) ↔ ∃𝑧 ∈ (BaseSet‘𝑈)(((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = 0)))
32 r19.41v 3083 . . . . . . . 8 (∃𝑧 ∈ (BaseSet‘𝑈)(((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = 0) ↔ (∃𝑧 ∈ (BaseSet‘𝑈)((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = 0))
3331, 32syl6rbb 277 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → ((∃𝑧 ∈ (BaseSet‘𝑈)((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = 0) ↔ ∃𝑧 ∈ (BaseSet‘𝑈)(((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑍𝑧)))))
3421, 33bitrd 268 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑥 = 0 ↔ ∃𝑧 ∈ (BaseSet‘𝑈)(((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑍𝑧)))))
3534abbidv 2738 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → {𝑥𝑥 = 0} = {𝑥 ∣ ∃𝑧 ∈ (BaseSet‘𝑈)(((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑍𝑧)))})
3610, 35syl5req 2668 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → {𝑥 ∣ ∃𝑧 ∈ (BaseSet‘𝑈)(((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑍𝑧)))} = {0})
3736supeq1d 8312 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → sup({𝑥 ∣ ∃𝑧 ∈ (BaseSet‘𝑈)(((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑍𝑧)))}, ℝ*, < ) = sup({0}, ℝ*, < ))
389, 37eqtrd 2655 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑁𝑍) = sup({0}, ℝ*, < ))
39 xrltso 11934 . . 3 < Or ℝ*
40 0xr 10046 . . 3 0 ∈ ℝ*
41 supsn 8338 . . 3 (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0)
4239, 40, 41mp2an 707 . 2 sup({0}, ℝ*, < ) = 0
4338, 42syl6eq 2671 1 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑁𝑍) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  {cab 2607  wrex 2909  {csn 4155   class class class wbr 4623   Or wor 5004  wf 5853  cfv 5857  (class class class)co 6615  supcsup 8306  0cc0 9896  1c1 9897  *cxr 10033   < clt 10034  cle 10035  NrmCVeccnv 27327  BaseSetcba 27329  0veccn0v 27331  normCVcnmcv 27333   normOpOLD cnmoo 27484   0op c0o 27486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-pre-sup 9974
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-er 7702  df-map 7819  df-en 7916  df-dom 7917  df-sdom 7918  df-sup 8308  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-nn 10981  df-2 11039  df-3 11040  df-n0 11253  df-z 11338  df-uz 11648  df-rp 11793  df-seq 12758  df-exp 12817  df-cj 13789  df-re 13790  df-im 13791  df-sqrt 13925  df-abs 13926  df-grpo 27235  df-gid 27236  df-ginv 27237  df-ablo 27287  df-vc 27302  df-nv 27335  df-va 27338  df-ba 27339  df-sm 27340  df-0v 27341  df-nmcv 27343  df-nmoo 27488  df-0o 27490
This theorem is referenced by:  0blo  27535  nmlno0lem  27536
  Copyright terms: Public domain W3C validator