MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoofval Structured version   Visualization version   GIF version

Theorem nmoofval 28533
Description: The operator norm function. (Contributed by NM, 6-Nov-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoofval.1 𝑋 = (BaseSet‘𝑈)
nmoofval.2 𝑌 = (BaseSet‘𝑊)
nmoofval.3 𝐿 = (normCV𝑈)
nmoofval.4 𝑀 = (normCV𝑊)
nmoofval.6 𝑁 = (𝑈 normOpOLD 𝑊)
Assertion
Ref Expression
nmoofval ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑁 = (𝑡 ∈ (𝑌m 𝑋) ↦ sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡𝑧)))}, ℝ*, < )))
Distinct variable groups:   𝑥,𝑡,𝑧,𝑈   𝑡,𝑊,𝑥,𝑧   𝑡,𝑋,𝑧   𝑡,𝑌,𝑥   𝑡,𝐿   𝑡,𝑀
Allowed substitution hints:   𝐿(𝑥,𝑧)   𝑀(𝑥,𝑧)   𝑁(𝑥,𝑧,𝑡)   𝑋(𝑥)   𝑌(𝑧)

Proof of Theorem nmoofval
Dummy variables 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmoofval.6 . 2 𝑁 = (𝑈 normOpOLD 𝑊)
2 fveq2 6664 . . . . . 6 (𝑢 = 𝑈 → (BaseSet‘𝑢) = (BaseSet‘𝑈))
3 nmoofval.1 . . . . . 6 𝑋 = (BaseSet‘𝑈)
42, 3syl6eqr 2874 . . . . 5 (𝑢 = 𝑈 → (BaseSet‘𝑢) = 𝑋)
54oveq2d 7166 . . . 4 (𝑢 = 𝑈 → ((BaseSet‘𝑤) ↑m (BaseSet‘𝑢)) = ((BaseSet‘𝑤) ↑m 𝑋))
6 fveq2 6664 . . . . . . . . . . 11 (𝑢 = 𝑈 → (normCV𝑢) = (normCV𝑈))
7 nmoofval.3 . . . . . . . . . . 11 𝐿 = (normCV𝑈)
86, 7syl6eqr 2874 . . . . . . . . . 10 (𝑢 = 𝑈 → (normCV𝑢) = 𝐿)
98fveq1d 6666 . . . . . . . . 9 (𝑢 = 𝑈 → ((normCV𝑢)‘𝑧) = (𝐿𝑧))
109breq1d 5068 . . . . . . . 8 (𝑢 = 𝑈 → (((normCV𝑢)‘𝑧) ≤ 1 ↔ (𝐿𝑧) ≤ 1))
1110anbi1d 631 . . . . . . 7 (𝑢 = 𝑈 → ((((normCV𝑢)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧))) ↔ ((𝐿𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧)))))
124, 11rexeqbidv 3402 . . . . . 6 (𝑢 = 𝑈 → (∃𝑧 ∈ (BaseSet‘𝑢)(((normCV𝑢)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧))) ↔ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧)))))
1312abbidv 2885 . . . . 5 (𝑢 = 𝑈 → {𝑥 ∣ ∃𝑧 ∈ (BaseSet‘𝑢)(((normCV𝑢)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧)))} = {𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧)))})
1413supeq1d 8904 . . . 4 (𝑢 = 𝑈 → sup({𝑥 ∣ ∃𝑧 ∈ (BaseSet‘𝑢)(((normCV𝑢)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧)))}, ℝ*, < ) = sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧)))}, ℝ*, < ))
155, 14mpteq12dv 5143 . . 3 (𝑢 = 𝑈 → (𝑡 ∈ ((BaseSet‘𝑤) ↑m (BaseSet‘𝑢)) ↦ sup({𝑥 ∣ ∃𝑧 ∈ (BaseSet‘𝑢)(((normCV𝑢)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧)))}, ℝ*, < )) = (𝑡 ∈ ((BaseSet‘𝑤) ↑m 𝑋) ↦ sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧)))}, ℝ*, < )))
16 fveq2 6664 . . . . . 6 (𝑤 = 𝑊 → (BaseSet‘𝑤) = (BaseSet‘𝑊))
17 nmoofval.2 . . . . . 6 𝑌 = (BaseSet‘𝑊)
1816, 17syl6eqr 2874 . . . . 5 (𝑤 = 𝑊 → (BaseSet‘𝑤) = 𝑌)
1918oveq1d 7165 . . . 4 (𝑤 = 𝑊 → ((BaseSet‘𝑤) ↑m 𝑋) = (𝑌m 𝑋))
20 fveq2 6664 . . . . . . . . . . 11 (𝑤 = 𝑊 → (normCV𝑤) = (normCV𝑊))
21 nmoofval.4 . . . . . . . . . . 11 𝑀 = (normCV𝑊)
2220, 21syl6eqr 2874 . . . . . . . . . 10 (𝑤 = 𝑊 → (normCV𝑤) = 𝑀)
2322fveq1d 6666 . . . . . . . . 9 (𝑤 = 𝑊 → ((normCV𝑤)‘(𝑡𝑧)) = (𝑀‘(𝑡𝑧)))
2423eqeq2d 2832 . . . . . . . 8 (𝑤 = 𝑊 → (𝑥 = ((normCV𝑤)‘(𝑡𝑧)) ↔ 𝑥 = (𝑀‘(𝑡𝑧))))
2524anbi2d 630 . . . . . . 7 (𝑤 = 𝑊 → (((𝐿𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧))) ↔ ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡𝑧)))))
2625rexbidv 3297 . . . . . 6 (𝑤 = 𝑊 → (∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧))) ↔ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡𝑧)))))
2726abbidv 2885 . . . . 5 (𝑤 = 𝑊 → {𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧)))} = {𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡𝑧)))})
2827supeq1d 8904 . . . 4 (𝑤 = 𝑊 → sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧)))}, ℝ*, < ) = sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡𝑧)))}, ℝ*, < ))
2919, 28mpteq12dv 5143 . . 3 (𝑤 = 𝑊 → (𝑡 ∈ ((BaseSet‘𝑤) ↑m 𝑋) ↦ sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧)))}, ℝ*, < )) = (𝑡 ∈ (𝑌m 𝑋) ↦ sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡𝑧)))}, ℝ*, < )))
30 df-nmoo 28516 . . 3 normOpOLD = (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ (𝑡 ∈ ((BaseSet‘𝑤) ↑m (BaseSet‘𝑢)) ↦ sup({𝑥 ∣ ∃𝑧 ∈ (BaseSet‘𝑢)(((normCV𝑢)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧)))}, ℝ*, < )))
31 ovex 7183 . . . 4 (𝑌m 𝑋) ∈ V
3231mptex 6980 . . 3 (𝑡 ∈ (𝑌m 𝑋) ↦ sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡𝑧)))}, ℝ*, < )) ∈ V
3315, 29, 30, 32ovmpo 7304 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑈 normOpOLD 𝑊) = (𝑡 ∈ (𝑌m 𝑋) ↦ sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡𝑧)))}, ℝ*, < )))
341, 33syl5eq 2868 1 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑁 = (𝑡 ∈ (𝑌m 𝑋) ↦ sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡𝑧)))}, ℝ*, < )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  {cab 2799  wrex 3139   class class class wbr 5058  cmpt 5138  cfv 6349  (class class class)co 7150  m cmap 8400  supcsup 8898  1c1 10532  *cxr 10668   < clt 10669  cle 10670  NrmCVeccnv 28355  BaseSetcba 28357  normCVcnmcv 28361   normOpOLD cnmoo 28512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pr 5321
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-sup 8900  df-nmoo 28516
This theorem is referenced by:  nmooval  28534  hhnmoi  29672
  Copyright terms: Public domain W3C validator