MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmooge0 Structured version   Visualization version   GIF version

Theorem nmooge0 27931
Description: The norm of an operator is nonnegative. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoxr.1 𝑋 = (BaseSet‘𝑈)
nmoxr.2 𝑌 = (BaseSet‘𝑊)
nmoxr.3 𝑁 = (𝑈 normOpOLD 𝑊)
Assertion
Ref Expression
nmooge0 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → 0 ≤ (𝑁𝑇))

Proof of Theorem nmooge0
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0xr 10278 . . 3 0 ∈ ℝ*
21a1i 11 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → 0 ∈ ℝ*)
3 simp2 1132 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → 𝑊 ∈ NrmCVec)
4 nmoxr.1 . . . . . . . 8 𝑋 = (BaseSet‘𝑈)
5 eqid 2760 . . . . . . . 8 (0vec𝑈) = (0vec𝑈)
64, 5nvzcl 27798 . . . . . . 7 (𝑈 ∈ NrmCVec → (0vec𝑈) ∈ 𝑋)
7 ffvelrn 6520 . . . . . . 7 ((𝑇:𝑋𝑌 ∧ (0vec𝑈) ∈ 𝑋) → (𝑇‘(0vec𝑈)) ∈ 𝑌)
86, 7sylan2 492 . . . . . 6 ((𝑇:𝑋𝑌𝑈 ∈ NrmCVec) → (𝑇‘(0vec𝑈)) ∈ 𝑌)
98ancoms 468 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (𝑇‘(0vec𝑈)) ∈ 𝑌)
1093adant2 1126 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (𝑇‘(0vec𝑈)) ∈ 𝑌)
11 nmoxr.2 . . . . 5 𝑌 = (BaseSet‘𝑊)
12 eqid 2760 . . . . 5 (normCV𝑊) = (normCV𝑊)
1311, 12nvcl 27825 . . . 4 ((𝑊 ∈ NrmCVec ∧ (𝑇‘(0vec𝑈)) ∈ 𝑌) → ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ∈ ℝ)
143, 10, 13syl2anc 696 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ∈ ℝ)
1514rexrd 10281 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ∈ ℝ*)
16 nmoxr.3 . . 3 𝑁 = (𝑈 normOpOLD 𝑊)
174, 11, 16nmoxr 27930 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (𝑁𝑇) ∈ ℝ*)
1811, 12nvge0 27837 . . 3 ((𝑊 ∈ NrmCVec ∧ (𝑇‘(0vec𝑈)) ∈ 𝑌) → 0 ≤ ((normCV𝑊)‘(𝑇‘(0vec𝑈))))
193, 10, 18syl2anc 696 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → 0 ≤ ((normCV𝑊)‘(𝑇‘(0vec𝑈))))
2011, 12nmosetre 27928 . . . . . . 7 ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → {𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))} ⊆ ℝ)
21 ressxr 10275 . . . . . . 7 ℝ ⊆ ℝ*
2220, 21syl6ss 3756 . . . . . 6 ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → {𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))} ⊆ ℝ*)
23 eqid 2760 . . . . . . 7 (normCV𝑈) = (normCV𝑈)
244, 5, 23nmosetn0 27929 . . . . . 6 (𝑈 ∈ NrmCVec → ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ∈ {𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))})
25 supxrub 12347 . . . . . 6 (({𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))} ⊆ ℝ* ∧ ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ∈ {𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))}) → ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ≤ sup({𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))}, ℝ*, < ))
2622, 24, 25syl2an 495 . . . . 5 (((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) ∧ 𝑈 ∈ NrmCVec) → ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ≤ sup({𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))}, ℝ*, < ))
27263impa 1101 . . . 4 ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌𝑈 ∈ NrmCVec) → ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ≤ sup({𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))}, ℝ*, < ))
28273comr 1120 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ≤ sup({𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))}, ℝ*, < ))
294, 11, 23, 12, 16nmooval 27927 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (𝑁𝑇) = sup({𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))}, ℝ*, < ))
3028, 29breqtrrd 4832 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ≤ (𝑁𝑇))
312, 15, 17, 19, 30xrletrd 12186 1 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → 0 ≤ (𝑁𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1632  wcel 2139  {cab 2746  wrex 3051  wss 3715   class class class wbr 4804  wf 6045  cfv 6049  (class class class)co 6813  supcsup 8511  cr 10127  0cc0 10128  1c1 10129  *cxr 10265   < clt 10266  cle 10267  NrmCVeccnv 27748  BaseSetcba 27750  0veccn0v 27752  normCVcnmcv 27754   normOpOLD cnmoo 27905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-map 8025  df-en 8122  df-dom 8123  df-sdom 8124  df-sup 8513  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-n0 11485  df-z 11570  df-uz 11880  df-rp 12026  df-seq 12996  df-exp 13055  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-grpo 27656  df-gid 27657  df-ginv 27658  df-ablo 27708  df-vc 27723  df-nv 27756  df-va 27759  df-ba 27760  df-sm 27761  df-0v 27762  df-nmcv 27764  df-nmoo 27909
This theorem is referenced by:  nmlnogt0  27961  htthlem  28083
  Copyright terms: Public domain W3C validator