![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nmooval | Structured version Visualization version GIF version |
Description: The operator norm function. (Contributed by NM, 27-Nov-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmoofval.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
nmoofval.2 | ⊢ 𝑌 = (BaseSet‘𝑊) |
nmoofval.3 | ⊢ 𝐿 = (normCV‘𝑈) |
nmoofval.4 | ⊢ 𝑀 = (normCV‘𝑊) |
nmoofval.6 | ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) |
Ref | Expression |
---|---|
nmooval | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → (𝑁‘𝑇) = sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑧)))}, ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmoofval.2 | . . . . 5 ⊢ 𝑌 = (BaseSet‘𝑊) | |
2 | fvex 6239 | . . . . 5 ⊢ (BaseSet‘𝑊) ∈ V | |
3 | 1, 2 | eqeltri 2726 | . . . 4 ⊢ 𝑌 ∈ V |
4 | nmoofval.1 | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
5 | fvex 6239 | . . . . 5 ⊢ (BaseSet‘𝑈) ∈ V | |
6 | 4, 5 | eqeltri 2726 | . . . 4 ⊢ 𝑋 ∈ V |
7 | 3, 6 | elmap 7928 | . . 3 ⊢ (𝑇 ∈ (𝑌 ↑𝑚 𝑋) ↔ 𝑇:𝑋⟶𝑌) |
8 | nmoofval.3 | . . . . . 6 ⊢ 𝐿 = (normCV‘𝑈) | |
9 | nmoofval.4 | . . . . . 6 ⊢ 𝑀 = (normCV‘𝑊) | |
10 | nmoofval.6 | . . . . . 6 ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) | |
11 | 4, 1, 8, 9, 10 | nmoofval 27745 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑁 = (𝑡 ∈ (𝑌 ↑𝑚 𝑋) ↦ sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡‘𝑧)))}, ℝ*, < ))) |
12 | 11 | fveq1d 6231 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑁‘𝑇) = ((𝑡 ∈ (𝑌 ↑𝑚 𝑋) ↦ sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡‘𝑧)))}, ℝ*, < ))‘𝑇)) |
13 | fveq1 6228 | . . . . . . . . . . 11 ⊢ (𝑡 = 𝑇 → (𝑡‘𝑧) = (𝑇‘𝑧)) | |
14 | 13 | fveq2d 6233 | . . . . . . . . . 10 ⊢ (𝑡 = 𝑇 → (𝑀‘(𝑡‘𝑧)) = (𝑀‘(𝑇‘𝑧))) |
15 | 14 | eqeq2d 2661 | . . . . . . . . 9 ⊢ (𝑡 = 𝑇 → (𝑥 = (𝑀‘(𝑡‘𝑧)) ↔ 𝑥 = (𝑀‘(𝑇‘𝑧)))) |
16 | 15 | anbi2d 740 | . . . . . . . 8 ⊢ (𝑡 = 𝑇 → (((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡‘𝑧))) ↔ ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑧))))) |
17 | 16 | rexbidv 3081 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → (∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡‘𝑧))) ↔ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑧))))) |
18 | 17 | abbidv 2770 | . . . . . 6 ⊢ (𝑡 = 𝑇 → {𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡‘𝑧)))} = {𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑧)))}) |
19 | 18 | supeq1d 8393 | . . . . 5 ⊢ (𝑡 = 𝑇 → sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡‘𝑧)))}, ℝ*, < ) = sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑧)))}, ℝ*, < )) |
20 | eqid 2651 | . . . . 5 ⊢ (𝑡 ∈ (𝑌 ↑𝑚 𝑋) ↦ sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡‘𝑧)))}, ℝ*, < )) = (𝑡 ∈ (𝑌 ↑𝑚 𝑋) ↦ sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡‘𝑧)))}, ℝ*, < )) | |
21 | xrltso 12012 | . . . . . 6 ⊢ < Or ℝ* | |
22 | 21 | supex 8410 | . . . . 5 ⊢ sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑧)))}, ℝ*, < ) ∈ V |
23 | 19, 20, 22 | fvmpt 6321 | . . . 4 ⊢ (𝑇 ∈ (𝑌 ↑𝑚 𝑋) → ((𝑡 ∈ (𝑌 ↑𝑚 𝑋) ↦ sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡‘𝑧)))}, ℝ*, < ))‘𝑇) = sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑧)))}, ℝ*, < )) |
24 | 12, 23 | sylan9eq 2705 | . . 3 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑇 ∈ (𝑌 ↑𝑚 𝑋)) → (𝑁‘𝑇) = sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑧)))}, ℝ*, < )) |
25 | 7, 24 | sylan2br 492 | . 2 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑇:𝑋⟶𝑌) → (𝑁‘𝑇) = sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑧)))}, ℝ*, < )) |
26 | 25 | 3impa 1278 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → (𝑁‘𝑇) = sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑧)))}, ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 {cab 2637 ∃wrex 2942 Vcvv 3231 class class class wbr 4685 ↦ cmpt 4762 ⟶wf 5922 ‘cfv 5926 (class class class)co 6690 ↑𝑚 cmap 7899 supcsup 8387 1c1 9975 ℝ*cxr 10111 < clt 10112 ≤ cle 10113 NrmCVeccnv 27567 BaseSetcba 27569 normCVcnmcv 27573 normOpOLD cnmoo 27724 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-pre-lttri 10048 ax-pre-lttrn 10049 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-po 5064 df-so 5065 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-er 7787 df-map 7901 df-en 7998 df-dom 7999 df-sdom 8000 df-sup 8389 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-nmoo 27728 |
This theorem is referenced by: nmoxr 27749 nmooge0 27750 nmorepnf 27751 nmoolb 27754 nmoubi 27755 nmoo0 27774 nmlno0lem 27776 |
Copyright terms: Public domain | W3C validator |