MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmooval Structured version   Visualization version   GIF version

Theorem nmooval 27458
Description: The operator norm function. (Contributed by NM, 27-Nov-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoofval.1 𝑋 = (BaseSet‘𝑈)
nmoofval.2 𝑌 = (BaseSet‘𝑊)
nmoofval.3 𝐿 = (normCV𝑈)
nmoofval.4 𝑀 = (normCV𝑊)
nmoofval.6 𝑁 = (𝑈 normOpOLD 𝑊)
Assertion
Ref Expression
nmooval ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (𝑁𝑇) = sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑧)))}, ℝ*, < ))
Distinct variable groups:   𝑥,𝑧,𝑈   𝑥,𝑊,𝑧   𝑧,𝑋   𝑥,𝑌   𝑥,𝑇,𝑧
Allowed substitution hints:   𝐿(𝑥,𝑧)   𝑀(𝑥,𝑧)   𝑁(𝑥,𝑧)   𝑋(𝑥)   𝑌(𝑧)

Proof of Theorem nmooval
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 nmoofval.2 . . . . 5 𝑌 = (BaseSet‘𝑊)
2 fvex 6160 . . . . 5 (BaseSet‘𝑊) ∈ V
31, 2eqeltri 2700 . . . 4 𝑌 ∈ V
4 nmoofval.1 . . . . 5 𝑋 = (BaseSet‘𝑈)
5 fvex 6160 . . . . 5 (BaseSet‘𝑈) ∈ V
64, 5eqeltri 2700 . . . 4 𝑋 ∈ V
73, 6elmap 7831 . . 3 (𝑇 ∈ (𝑌𝑚 𝑋) ↔ 𝑇:𝑋𝑌)
8 nmoofval.3 . . . . . 6 𝐿 = (normCV𝑈)
9 nmoofval.4 . . . . . 6 𝑀 = (normCV𝑊)
10 nmoofval.6 . . . . . 6 𝑁 = (𝑈 normOpOLD 𝑊)
114, 1, 8, 9, 10nmoofval 27457 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑁 = (𝑡 ∈ (𝑌𝑚 𝑋) ↦ sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡𝑧)))}, ℝ*, < )))
1211fveq1d 6152 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑁𝑇) = ((𝑡 ∈ (𝑌𝑚 𝑋) ↦ sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡𝑧)))}, ℝ*, < ))‘𝑇))
13 fveq1 6149 . . . . . . . . . . 11 (𝑡 = 𝑇 → (𝑡𝑧) = (𝑇𝑧))
1413fveq2d 6154 . . . . . . . . . 10 (𝑡 = 𝑇 → (𝑀‘(𝑡𝑧)) = (𝑀‘(𝑇𝑧)))
1514eqeq2d 2636 . . . . . . . . 9 (𝑡 = 𝑇 → (𝑥 = (𝑀‘(𝑡𝑧)) ↔ 𝑥 = (𝑀‘(𝑇𝑧))))
1615anbi2d 739 . . . . . . . 8 (𝑡 = 𝑇 → (((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡𝑧))) ↔ ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑧)))))
1716rexbidv 3050 . . . . . . 7 (𝑡 = 𝑇 → (∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡𝑧))) ↔ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑧)))))
1817abbidv 2744 . . . . . 6 (𝑡 = 𝑇 → {𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡𝑧)))} = {𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑧)))})
1918supeq1d 8297 . . . . 5 (𝑡 = 𝑇 → sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡𝑧)))}, ℝ*, < ) = sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑧)))}, ℝ*, < ))
20 eqid 2626 . . . . 5 (𝑡 ∈ (𝑌𝑚 𝑋) ↦ sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡𝑧)))}, ℝ*, < )) = (𝑡 ∈ (𝑌𝑚 𝑋) ↦ sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡𝑧)))}, ℝ*, < ))
21 xrltso 11918 . . . . . 6 < Or ℝ*
2221supex 8314 . . . . 5 sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑧)))}, ℝ*, < ) ∈ V
2319, 20, 22fvmpt 6240 . . . 4 (𝑇 ∈ (𝑌𝑚 𝑋) → ((𝑡 ∈ (𝑌𝑚 𝑋) ↦ sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡𝑧)))}, ℝ*, < ))‘𝑇) = sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑧)))}, ℝ*, < ))
2412, 23sylan9eq 2680 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑇 ∈ (𝑌𝑚 𝑋)) → (𝑁𝑇) = sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑧)))}, ℝ*, < ))
257, 24sylan2br 493 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑇:𝑋𝑌) → (𝑁𝑇) = sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑧)))}, ℝ*, < ))
26253impa 1256 1 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (𝑁𝑇) = sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑧)))}, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1992  {cab 2612  wrex 2913  Vcvv 3191   class class class wbr 4618  cmpt 4678  wf 5846  cfv 5850  (class class class)co 6605  𝑚 cmap 7803  supcsup 8291  1c1 9882  *cxr 10018   < clt 10019  cle 10020  NrmCVeccnv 27279  BaseSetcba 27281  normCVcnmcv 27285   normOpOLD cnmoo 27436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-pre-lttri 9955  ax-pre-lttrn 9956
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-po 5000  df-so 5001  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-er 7688  df-map 7805  df-en 7901  df-dom 7902  df-sdom 7903  df-sup 8293  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-nmoo 27440
This theorem is referenced by:  nmoxr  27461  nmooge0  27462  nmorepnf  27463  nmoolb  27466  nmoubi  27467  nmoo0  27486  nmlno0lem  27488
  Copyright terms: Public domain W3C validator