HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmophmi Structured version   Visualization version   GIF version

Theorem nmophmi 29018
Description: The norm of the scalar product of a bounded linear operator. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
nmophm.1 𝑇 ∈ BndLinOp
Assertion
Ref Expression
nmophmi (𝐴 ∈ ℂ → (normop‘(𝐴 ·op 𝑇)) = ((abs‘𝐴) · (normop𝑇)))

Proof of Theorem nmophmi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nmophm.1 . . . . . . . . . . 11 𝑇 ∈ BndLinOp
2 bdopf 28849 . . . . . . . . . . 11 (𝑇 ∈ BndLinOp → 𝑇: ℋ⟶ ℋ)
31, 2ax-mp 5 . . . . . . . . . 10 𝑇: ℋ⟶ ℋ
4 homval 28728 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑥) = (𝐴 · (𝑇𝑥)))
53, 4mp3an2 1452 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑥) = (𝐴 · (𝑇𝑥)))
65fveq2d 6233 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ) → (norm‘((𝐴 ·op 𝑇)‘𝑥)) = (norm‘(𝐴 · (𝑇𝑥))))
73ffvelrni 6398 . . . . . . . . 9 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ℋ)
8 norm-iii 28125 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (𝑇𝑥) ∈ ℋ) → (norm‘(𝐴 · (𝑇𝑥))) = ((abs‘𝐴) · (norm‘(𝑇𝑥))))
97, 8sylan2 490 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ) → (norm‘(𝐴 · (𝑇𝑥))) = ((abs‘𝐴) · (norm‘(𝑇𝑥))))
106, 9eqtrd 2685 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ) → (norm‘((𝐴 ·op 𝑇)‘𝑥)) = ((abs‘𝐴) · (norm‘(𝑇𝑥))))
1110adantr 480 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → (norm‘((𝐴 ·op 𝑇)‘𝑥)) = ((abs‘𝐴) · (norm‘(𝑇𝑥))))
12 normcl 28110 . . . . . . . . 9 ((𝑇𝑥) ∈ ℋ → (norm‘(𝑇𝑥)) ∈ ℝ)
137, 12syl 17 . . . . . . . 8 (𝑥 ∈ ℋ → (norm‘(𝑇𝑥)) ∈ ℝ)
1413ad2antlr 763 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → (norm‘(𝑇𝑥)) ∈ ℝ)
15 abscl 14062 . . . . . . . . 9 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
16 absge0 14071 . . . . . . . . 9 (𝐴 ∈ ℂ → 0 ≤ (abs‘𝐴))
1715, 16jca 553 . . . . . . . 8 (𝐴 ∈ ℂ → ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)))
1817ad2antrr 762 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)))
19 nmoplb 28894 . . . . . . . . 9 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(𝑇𝑥)) ≤ (normop𝑇))
203, 19mp3an1 1451 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(𝑇𝑥)) ≤ (normop𝑇))
2120adantll 750 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → (norm‘(𝑇𝑥)) ≤ (normop𝑇))
22 nmopre 28857 . . . . . . . . 9 (𝑇 ∈ BndLinOp → (normop𝑇) ∈ ℝ)
231, 22ax-mp 5 . . . . . . . 8 (normop𝑇) ∈ ℝ
24 lemul2a 10916 . . . . . . . 8 ((((norm‘(𝑇𝑥)) ∈ ℝ ∧ (normop𝑇) ∈ ℝ ∧ ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴))) ∧ (norm‘(𝑇𝑥)) ≤ (normop𝑇)) → ((abs‘𝐴) · (norm‘(𝑇𝑥))) ≤ ((abs‘𝐴) · (normop𝑇)))
2523, 24mp3anl2 1459 . . . . . . 7 ((((norm‘(𝑇𝑥)) ∈ ℝ ∧ ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴))) ∧ (norm‘(𝑇𝑥)) ≤ (normop𝑇)) → ((abs‘𝐴) · (norm‘(𝑇𝑥))) ≤ ((abs‘𝐴) · (normop𝑇)))
2614, 18, 21, 25syl21anc 1365 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → ((abs‘𝐴) · (norm‘(𝑇𝑥))) ≤ ((abs‘𝐴) · (normop𝑇)))
2711, 26eqbrtrd 4707 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → (norm‘((𝐴 ·op 𝑇)‘𝑥)) ≤ ((abs‘𝐴) · (normop𝑇)))
2827ex 449 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ) → ((norm𝑥) ≤ 1 → (norm‘((𝐴 ·op 𝑇)‘𝑥)) ≤ ((abs‘𝐴) · (normop𝑇))))
2928ralrimiva 2995 . . 3 (𝐴 ∈ ℂ → ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘((𝐴 ·op 𝑇)‘𝑥)) ≤ ((abs‘𝐴) · (normop𝑇))))
30 homulcl 28746 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op 𝑇): ℋ⟶ ℋ)
313, 30mpan2 707 . . . 4 (𝐴 ∈ ℂ → (𝐴 ·op 𝑇): ℋ⟶ ℋ)
32 remulcl 10059 . . . . . 6 (((abs‘𝐴) ∈ ℝ ∧ (normop𝑇) ∈ ℝ) → ((abs‘𝐴) · (normop𝑇)) ∈ ℝ)
3315, 23, 32sylancl 695 . . . . 5 (𝐴 ∈ ℂ → ((abs‘𝐴) · (normop𝑇)) ∈ ℝ)
3433rexrd 10127 . . . 4 (𝐴 ∈ ℂ → ((abs‘𝐴) · (normop𝑇)) ∈ ℝ*)
35 nmopub 28895 . . . 4 (((𝐴 ·op 𝑇): ℋ⟶ ℋ ∧ ((abs‘𝐴) · (normop𝑇)) ∈ ℝ*) → ((normop‘(𝐴 ·op 𝑇)) ≤ ((abs‘𝐴) · (normop𝑇)) ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘((𝐴 ·op 𝑇)‘𝑥)) ≤ ((abs‘𝐴) · (normop𝑇)))))
3631, 34, 35syl2anc 694 . . 3 (𝐴 ∈ ℂ → ((normop‘(𝐴 ·op 𝑇)) ≤ ((abs‘𝐴) · (normop𝑇)) ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘((𝐴 ·op 𝑇)‘𝑥)) ≤ ((abs‘𝐴) · (normop𝑇)))))
3729, 36mpbird 247 . 2 (𝐴 ∈ ℂ → (normop‘(𝐴 ·op 𝑇)) ≤ ((abs‘𝐴) · (normop𝑇)))
38 fveq2 6229 . . . . . . . 8 (𝐴 = 0 → (abs‘𝐴) = (abs‘0))
39 abs0 14069 . . . . . . . 8 (abs‘0) = 0
4038, 39syl6eq 2701 . . . . . . 7 (𝐴 = 0 → (abs‘𝐴) = 0)
4140oveq1d 6705 . . . . . 6 (𝐴 = 0 → ((abs‘𝐴) · (normop𝑇)) = (0 · (normop𝑇)))
4223recni 10090 . . . . . . 7 (normop𝑇) ∈ ℂ
4342mul02i 10263 . . . . . 6 (0 · (normop𝑇)) = 0
4441, 43syl6eq 2701 . . . . 5 (𝐴 = 0 → ((abs‘𝐴) · (normop𝑇)) = 0)
4544adantl 481 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 = 0) → ((abs‘𝐴) · (normop𝑇)) = 0)
46 nmopge0 28898 . . . . . 6 ((𝐴 ·op 𝑇): ℋ⟶ ℋ → 0 ≤ (normop‘(𝐴 ·op 𝑇)))
4731, 46syl 17 . . . . 5 (𝐴 ∈ ℂ → 0 ≤ (normop‘(𝐴 ·op 𝑇)))
4847adantr 480 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 = 0) → 0 ≤ (normop‘(𝐴 ·op 𝑇)))
4945, 48eqbrtrd 4707 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 = 0) → ((abs‘𝐴) · (normop𝑇)) ≤ (normop‘(𝐴 ·op 𝑇)))
50 nmoplb 28894 . . . . . . . . . . . 12 (((𝐴 ·op 𝑇): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘((𝐴 ·op 𝑇)‘𝑥)) ≤ (normop‘(𝐴 ·op 𝑇)))
5131, 50syl3an1 1399 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘((𝐴 ·op 𝑇)‘𝑥)) ≤ (normop‘(𝐴 ·op 𝑇)))
52513expa 1284 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → (norm‘((𝐴 ·op 𝑇)‘𝑥)) ≤ (normop‘(𝐴 ·op 𝑇)))
5311, 52eqbrtrrd 4709 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → ((abs‘𝐴) · (norm‘(𝑇𝑥))) ≤ (normop‘(𝐴 ·op 𝑇)))
5453adantllr 755 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → ((abs‘𝐴) · (norm‘(𝑇𝑥))) ≤ (normop‘(𝐴 ·op 𝑇)))
5513adantl 481 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℋ) → (norm‘(𝑇𝑥)) ∈ ℝ)
56 nmopxr 28853 . . . . . . . . . . . . 13 ((𝐴 ·op 𝑇): ℋ⟶ ℋ → (normop‘(𝐴 ·op 𝑇)) ∈ ℝ*)
5731, 56syl 17 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (normop‘(𝐴 ·op 𝑇)) ∈ ℝ*)
58 nmopgtmnf 28855 . . . . . . . . . . . . 13 ((𝐴 ·op 𝑇): ℋ⟶ ℋ → -∞ < (normop‘(𝐴 ·op 𝑇)))
5931, 58syl 17 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → -∞ < (normop‘(𝐴 ·op 𝑇)))
60 xrre 12038 . . . . . . . . . . . 12 ((((normop‘(𝐴 ·op 𝑇)) ∈ ℝ* ∧ ((abs‘𝐴) · (normop𝑇)) ∈ ℝ) ∧ (-∞ < (normop‘(𝐴 ·op 𝑇)) ∧ (normop‘(𝐴 ·op 𝑇)) ≤ ((abs‘𝐴) · (normop𝑇)))) → (normop‘(𝐴 ·op 𝑇)) ∈ ℝ)
6157, 33, 59, 37, 60syl22anc 1367 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (normop‘(𝐴 ·op 𝑇)) ∈ ℝ)
6261ad2antrr 762 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℋ) → (normop‘(𝐴 ·op 𝑇)) ∈ ℝ)
6315ad2antrr 762 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℋ) → (abs‘𝐴) ∈ ℝ)
64 absgt0 14108 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (𝐴 ≠ 0 ↔ 0 < (abs‘𝐴)))
6564biimpa 500 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → 0 < (abs‘𝐴))
6665adantr 480 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℋ) → 0 < (abs‘𝐴))
67 lemuldiv2 10942 . . . . . . . . . 10 (((norm‘(𝑇𝑥)) ∈ ℝ ∧ (normop‘(𝐴 ·op 𝑇)) ∈ ℝ ∧ ((abs‘𝐴) ∈ ℝ ∧ 0 < (abs‘𝐴))) → (((abs‘𝐴) · (norm‘(𝑇𝑥))) ≤ (normop‘(𝐴 ·op 𝑇)) ↔ (norm‘(𝑇𝑥)) ≤ ((normop‘(𝐴 ·op 𝑇)) / (abs‘𝐴))))
6855, 62, 63, 66, 67syl112anc 1370 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℋ) → (((abs‘𝐴) · (norm‘(𝑇𝑥))) ≤ (normop‘(𝐴 ·op 𝑇)) ↔ (norm‘(𝑇𝑥)) ≤ ((normop‘(𝐴 ·op 𝑇)) / (abs‘𝐴))))
6968adantr 480 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → (((abs‘𝐴) · (norm‘(𝑇𝑥))) ≤ (normop‘(𝐴 ·op 𝑇)) ↔ (norm‘(𝑇𝑥)) ≤ ((normop‘(𝐴 ·op 𝑇)) / (abs‘𝐴))))
7054, 69mpbid 222 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → (norm‘(𝑇𝑥)) ≤ ((normop‘(𝐴 ·op 𝑇)) / (abs‘𝐴)))
7170ex 449 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℋ) → ((norm𝑥) ≤ 1 → (norm‘(𝑇𝑥)) ≤ ((normop‘(𝐴 ·op 𝑇)) / (abs‘𝐴))))
7271ralrimiva 2995 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘(𝑇𝑥)) ≤ ((normop‘(𝐴 ·op 𝑇)) / (abs‘𝐴))))
7361adantr 480 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (normop‘(𝐴 ·op 𝑇)) ∈ ℝ)
7415adantr 480 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ)
75 abs00 14073 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((abs‘𝐴) = 0 ↔ 𝐴 = 0))
7675necon3bid 2867 . . . . . . . . 9 (𝐴 ∈ ℂ → ((abs‘𝐴) ≠ 0 ↔ 𝐴 ≠ 0))
7776biimpar 501 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ≠ 0)
7873, 74, 77redivcld 10891 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((normop‘(𝐴 ·op 𝑇)) / (abs‘𝐴)) ∈ ℝ)
7978rexrd 10127 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((normop‘(𝐴 ·op 𝑇)) / (abs‘𝐴)) ∈ ℝ*)
80 nmopub 28895 . . . . . 6 ((𝑇: ℋ⟶ ℋ ∧ ((normop‘(𝐴 ·op 𝑇)) / (abs‘𝐴)) ∈ ℝ*) → ((normop𝑇) ≤ ((normop‘(𝐴 ·op 𝑇)) / (abs‘𝐴)) ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘(𝑇𝑥)) ≤ ((normop‘(𝐴 ·op 𝑇)) / (abs‘𝐴)))))
813, 79, 80sylancr 696 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((normop𝑇) ≤ ((normop‘(𝐴 ·op 𝑇)) / (abs‘𝐴)) ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘(𝑇𝑥)) ≤ ((normop‘(𝐴 ·op 𝑇)) / (abs‘𝐴)))))
8272, 81mpbird 247 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (normop𝑇) ≤ ((normop‘(𝐴 ·op 𝑇)) / (abs‘𝐴)))
8323a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (normop𝑇) ∈ ℝ)
84 lemuldiv2 10942 . . . . 5 (((normop𝑇) ∈ ℝ ∧ (normop‘(𝐴 ·op 𝑇)) ∈ ℝ ∧ ((abs‘𝐴) ∈ ℝ ∧ 0 < (abs‘𝐴))) → (((abs‘𝐴) · (normop𝑇)) ≤ (normop‘(𝐴 ·op 𝑇)) ↔ (normop𝑇) ≤ ((normop‘(𝐴 ·op 𝑇)) / (abs‘𝐴))))
8583, 73, 74, 65, 84syl112anc 1370 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (((abs‘𝐴) · (normop𝑇)) ≤ (normop‘(𝐴 ·op 𝑇)) ↔ (normop𝑇) ≤ ((normop‘(𝐴 ·op 𝑇)) / (abs‘𝐴))))
8682, 85mpbird 247 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((abs‘𝐴) · (normop𝑇)) ≤ (normop‘(𝐴 ·op 𝑇)))
8749, 86pm2.61dane 2910 . 2 (𝐴 ∈ ℂ → ((abs‘𝐴) · (normop𝑇)) ≤ (normop‘(𝐴 ·op 𝑇)))
8861, 33letri3d 10217 . 2 (𝐴 ∈ ℂ → ((normop‘(𝐴 ·op 𝑇)) = ((abs‘𝐴) · (normop𝑇)) ↔ ((normop‘(𝐴 ·op 𝑇)) ≤ ((abs‘𝐴) · (normop𝑇)) ∧ ((abs‘𝐴) · (normop𝑇)) ≤ (normop‘(𝐴 ·op 𝑇)))))
8937, 87, 88mpbir2and 977 1 (𝐴 ∈ ℂ → (normop‘(𝐴 ·op 𝑇)) = ((abs‘𝐴) · (normop𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wne 2823  wral 2941   class class class wbr 4685  wf 5922  cfv 5926  (class class class)co 6690  cc 9972  cr 9973  0cc0 9974  1c1 9975   · cmul 9979  -∞cmnf 10110  *cxr 10111   < clt 10112  cle 10113   / cdiv 10722  abscabs 14018  chil 27904   · csm 27906  normcno 27908   ·op chot 27924  normopcnop 27930  BndLinOpcbo 27933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-hilex 27984  ax-hfvadd 27985  ax-hvcom 27986  ax-hvass 27987  ax-hv0cl 27988  ax-hvaddid 27989  ax-hfvmul 27990  ax-hvmulid 27991  ax-hvmulass 27992  ax-hvdistr1 27993  ax-hvdistr2 27994  ax-hvmul0 27995  ax-hfi 28064  ax-his1 28067  ax-his2 28068  ax-his3 28069  ax-his4 28070
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-grpo 27475  df-gid 27476  df-ablo 27527  df-vc 27542  df-nv 27575  df-va 27578  df-ba 27579  df-sm 27580  df-0v 27581  df-nmcv 27583  df-hnorm 27953  df-hba 27954  df-hvsub 27956  df-homul 28718  df-nmop 28826  df-lnop 28828  df-bdop 28829
This theorem is referenced by:  bdophmi  29019
  Copyright terms: Public domain W3C validator