HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmopnegi Structured version   Visualization version   GIF version

Theorem nmopnegi 28673
Description: Value of the norm of the negative of a Hilbert space operator. Unlike nmophmi 28739, the operator does not have to be bounded. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
nmopneg.1 𝑇: ℋ⟶ ℋ
Assertion
Ref Expression
nmopnegi (normop‘(-1 ·op 𝑇)) = (normop𝑇)

Proof of Theorem nmopnegi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neg1cn 11068 . . . . . . . . . 10 -1 ∈ ℂ
2 nmopneg.1 . . . . . . . . . 10 𝑇: ℋ⟶ ℋ
3 homval 28449 . . . . . . . . . 10 ((-1 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → ((-1 ·op 𝑇)‘𝑦) = (-1 · (𝑇𝑦)))
41, 2, 3mp3an12 1411 . . . . . . . . 9 (𝑦 ∈ ℋ → ((-1 ·op 𝑇)‘𝑦) = (-1 · (𝑇𝑦)))
54fveq2d 6152 . . . . . . . 8 (𝑦 ∈ ℋ → (norm‘((-1 ·op 𝑇)‘𝑦)) = (norm‘(-1 · (𝑇𝑦))))
62ffvelrni 6314 . . . . . . . . 9 (𝑦 ∈ ℋ → (𝑇𝑦) ∈ ℋ)
7 normneg 27850 . . . . . . . . 9 ((𝑇𝑦) ∈ ℋ → (norm‘(-1 · (𝑇𝑦))) = (norm‘(𝑇𝑦)))
86, 7syl 17 . . . . . . . 8 (𝑦 ∈ ℋ → (norm‘(-1 · (𝑇𝑦))) = (norm‘(𝑇𝑦)))
95, 8eqtrd 2655 . . . . . . 7 (𝑦 ∈ ℋ → (norm‘((-1 ·op 𝑇)‘𝑦)) = (norm‘(𝑇𝑦)))
109eqeq2d 2631 . . . . . 6 (𝑦 ∈ ℋ → (𝑥 = (norm‘((-1 ·op 𝑇)‘𝑦)) ↔ 𝑥 = (norm‘(𝑇𝑦))))
1110anbi2d 739 . . . . 5 (𝑦 ∈ ℋ → (((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((-1 ·op 𝑇)‘𝑦))) ↔ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))))
1211rexbiia 3033 . . . 4 (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((-1 ·op 𝑇)‘𝑦))) ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦))))
1312abbii 2736 . . 3 {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((-1 ·op 𝑇)‘𝑦)))} = {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}
1413supeq1i 8297 . 2 sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((-1 ·op 𝑇)‘𝑦)))}, ℝ*, < ) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}, ℝ*, < )
15 homulcl 28467 . . . 4 ((-1 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (-1 ·op 𝑇): ℋ⟶ ℋ)
161, 2, 15mp2an 707 . . 3 (-1 ·op 𝑇): ℋ⟶ ℋ
17 nmopval 28564 . . 3 ((-1 ·op 𝑇): ℋ⟶ ℋ → (normop‘(-1 ·op 𝑇)) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((-1 ·op 𝑇)‘𝑦)))}, ℝ*, < ))
1816, 17ax-mp 5 . 2 (normop‘(-1 ·op 𝑇)) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((-1 ·op 𝑇)‘𝑦)))}, ℝ*, < )
19 nmopval 28564 . . 3 (𝑇: ℋ⟶ ℋ → (normop𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}, ℝ*, < ))
202, 19ax-mp 5 . 2 (normop𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}, ℝ*, < )
2114, 18, 203eqtr4i 2653 1 (normop‘(-1 ·op 𝑇)) = (normop𝑇)
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1480  wcel 1987  {cab 2607  wrex 2908   class class class wbr 4613  wf 5843  cfv 5847  (class class class)co 6604  supcsup 8290  cc 9878  1c1 9881  *cxr 10017   < clt 10018  cle 10019  -cneg 10211  chil 27625   · csm 27627  normcno 27629   ·op chot 27645  normopcnop 27651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-hilex 27705  ax-hfvadd 27706  ax-hvcom 27707  ax-hv0cl 27709  ax-hvaddid 27710  ax-hfvmul 27711  ax-hvmulid 27712  ax-hvmulass 27713  ax-hvdistr1 27714  ax-hvmul0 27716  ax-hfi 27785  ax-his1 27788  ax-his3 27790  ax-his4 27791
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-sup 8292  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-seq 12742  df-exp 12801  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-hnorm 27674  df-hvsub 27677  df-homul 28439  df-nmop 28547
This theorem is referenced by:  nmoptri2i  28807
  Copyright terms: Public domain W3C validator