HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmopre Structured version   Visualization version   GIF version

Theorem nmopre 27919
Description: The norm of a bounded operator is a real number. (Contributed by NM, 29-Jan-2006.) (New usage is discouraged.)
Assertion
Ref Expression
nmopre (𝑇 ∈ BndLinOp → (normop𝑇) ∈ ℝ)

Proof of Theorem nmopre
StepHypRef Expression
1 bdopf 27911 . . 3 (𝑇 ∈ BndLinOp → 𝑇: ℋ⟶ ℋ)
2 nmopgtmnf 27917 . . 3 (𝑇: ℋ⟶ ℋ → -∞ < (normop𝑇))
31, 2syl 17 . 2 (𝑇 ∈ BndLinOp → -∞ < (normop𝑇))
4 elbdop 27909 . . 3 (𝑇 ∈ BndLinOp ↔ (𝑇 ∈ LinOp ∧ (normop𝑇) < +∞))
54simprbi 478 . 2 (𝑇 ∈ BndLinOp → (normop𝑇) < +∞)
6 nmopxr 27915 . . 3 (𝑇: ℋ⟶ ℋ → (normop𝑇) ∈ ℝ*)
7 xrrebnd 11832 . . 3 ((normop𝑇) ∈ ℝ* → ((normop𝑇) ∈ ℝ ↔ (-∞ < (normop𝑇) ∧ (normop𝑇) < +∞)))
81, 6, 73syl 18 . 2 (𝑇 ∈ BndLinOp → ((normop𝑇) ∈ ℝ ↔ (-∞ < (normop𝑇) ∧ (normop𝑇) < +∞)))
93, 5, 8mpbir2and 958 1 (𝑇 ∈ BndLinOp → (normop𝑇) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  wcel 1976   class class class wbr 4577  wf 5786  cfv 5790  cr 9791  +∞cpnf 9927  -∞cmnf 9928  *cxr 9929   < clt 9930  chil 26966  normopcnop 26992  LinOpclo 26994  BndLinOpcbo 26995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870  ax-hilex 27046  ax-hfvadd 27047  ax-hvcom 27048  ax-hvass 27049  ax-hv0cl 27050  ax-hvaddid 27051  ax-hfvmul 27052  ax-hvmulid 27053  ax-hvmulass 27054  ax-hvdistr1 27055  ax-hvdistr2 27056  ax-hvmul0 27057  ax-hfi 27126  ax-his1 27129  ax-his2 27130  ax-his3 27131  ax-his4 27132
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-er 7606  df-map 7723  df-en 7819  df-dom 7820  df-sdom 7821  df-sup 8208  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10534  df-nn 10868  df-2 10926  df-3 10927  df-4 10928  df-n0 11140  df-z 11211  df-uz 11520  df-rp 11665  df-seq 12619  df-exp 12678  df-cj 13633  df-re 13634  df-im 13635  df-sqrt 13769  df-abs 13770  df-grpo 26497  df-gid 26498  df-ablo 26552  df-vc 26567  df-nv 26615  df-va 26618  df-ba 26619  df-sm 26620  df-0v 26621  df-nmcv 26623  df-hnorm 27015  df-hba 27016  df-hvsub 27018  df-nmop 27888  df-lnop 27890  df-bdop 27891
This theorem is referenced by:  nmbdoplbi  28073  nmophmi  28080  bdophmi  28081  lnopcnbd  28085  nmopadjlem  28138  nmopadji  28139  nmoptrii  28143  nmopcoi  28144  bdophsi  28145  bdopcoi  28147  nmoptri2i  28148  nmopcoadji  28150  nmopcoadj0i  28152  unierri  28153
  Copyright terms: Public domain W3C validator