HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmoptrii Structured version   Visualization version   GIF version

Theorem nmoptrii 29865
Description: Triangle inequality for the norms of bounded linear operators. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoptri.1 𝑆 ∈ BndLinOp
nmoptri.2 𝑇 ∈ BndLinOp
Assertion
Ref Expression
nmoptrii (normop‘(𝑆 +op 𝑇)) ≤ ((normop𝑆) + (normop𝑇))

Proof of Theorem nmoptrii
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nmoptri.1 . . . . 5 𝑆 ∈ BndLinOp
2 bdopf 29633 . . . . 5 (𝑆 ∈ BndLinOp → 𝑆: ℋ⟶ ℋ)
31, 2ax-mp 5 . . . 4 𝑆: ℋ⟶ ℋ
4 nmoptri.2 . . . . 5 𝑇 ∈ BndLinOp
5 bdopf 29633 . . . . 5 (𝑇 ∈ BndLinOp → 𝑇: ℋ⟶ ℋ)
64, 5ax-mp 5 . . . 4 𝑇: ℋ⟶ ℋ
73, 6hoaddcli 29539 . . 3 (𝑆 +op 𝑇): ℋ⟶ ℋ
8 nmopre 29641 . . . . . 6 (𝑆 ∈ BndLinOp → (normop𝑆) ∈ ℝ)
91, 8ax-mp 5 . . . . 5 (normop𝑆) ∈ ℝ
10 nmopre 29641 . . . . . 6 (𝑇 ∈ BndLinOp → (normop𝑇) ∈ ℝ)
114, 10ax-mp 5 . . . . 5 (normop𝑇) ∈ ℝ
129, 11readdcli 10650 . . . 4 ((normop𝑆) + (normop𝑇)) ∈ ℝ
1312rexri 10693 . . 3 ((normop𝑆) + (normop𝑇)) ∈ ℝ*
14 nmopub 29679 . . 3 (((𝑆 +op 𝑇): ℋ⟶ ℋ ∧ ((normop𝑆) + (normop𝑇)) ∈ ℝ*) → ((normop‘(𝑆 +op 𝑇)) ≤ ((normop𝑆) + (normop𝑇)) ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘((𝑆 +op 𝑇)‘𝑥)) ≤ ((normop𝑆) + (normop𝑇)))))
157, 13, 14mp2an 690 . 2 ((normop‘(𝑆 +op 𝑇)) ≤ ((normop𝑆) + (normop𝑇)) ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘((𝑆 +op 𝑇)‘𝑥)) ≤ ((normop𝑆) + (normop𝑇))))
163, 6hoscli 29533 . . . . . 6 (𝑥 ∈ ℋ → ((𝑆 +op 𝑇)‘𝑥) ∈ ℋ)
17 normcl 28896 . . . . . 6 (((𝑆 +op 𝑇)‘𝑥) ∈ ℋ → (norm‘((𝑆 +op 𝑇)‘𝑥)) ∈ ℝ)
1816, 17syl 17 . . . . 5 (𝑥 ∈ ℋ → (norm‘((𝑆 +op 𝑇)‘𝑥)) ∈ ℝ)
1918adantr 483 . . . 4 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘((𝑆 +op 𝑇)‘𝑥)) ∈ ℝ)
203ffvelrni 6845 . . . . . . 7 (𝑥 ∈ ℋ → (𝑆𝑥) ∈ ℋ)
21 normcl 28896 . . . . . . 7 ((𝑆𝑥) ∈ ℋ → (norm‘(𝑆𝑥)) ∈ ℝ)
2220, 21syl 17 . . . . . 6 (𝑥 ∈ ℋ → (norm‘(𝑆𝑥)) ∈ ℝ)
236ffvelrni 6845 . . . . . . 7 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ℋ)
24 normcl 28896 . . . . . . 7 ((𝑇𝑥) ∈ ℋ → (norm‘(𝑇𝑥)) ∈ ℝ)
2523, 24syl 17 . . . . . 6 (𝑥 ∈ ℋ → (norm‘(𝑇𝑥)) ∈ ℝ)
2622, 25readdcld 10664 . . . . 5 (𝑥 ∈ ℋ → ((norm‘(𝑆𝑥)) + (norm‘(𝑇𝑥))) ∈ ℝ)
2726adantr 483 . . . 4 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((norm‘(𝑆𝑥)) + (norm‘(𝑇𝑥))) ∈ ℝ)
2812a1i 11 . . . 4 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((normop𝑆) + (normop𝑇)) ∈ ℝ)
29 hosval 29511 . . . . . . . 8 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑆 +op 𝑇)‘𝑥) = ((𝑆𝑥) + (𝑇𝑥)))
303, 6, 29mp3an12 1447 . . . . . . 7 (𝑥 ∈ ℋ → ((𝑆 +op 𝑇)‘𝑥) = ((𝑆𝑥) + (𝑇𝑥)))
3130fveq2d 6669 . . . . . 6 (𝑥 ∈ ℋ → (norm‘((𝑆 +op 𝑇)‘𝑥)) = (norm‘((𝑆𝑥) + (𝑇𝑥))))
32 norm-ii 28909 . . . . . . 7 (((𝑆𝑥) ∈ ℋ ∧ (𝑇𝑥) ∈ ℋ) → (norm‘((𝑆𝑥) + (𝑇𝑥))) ≤ ((norm‘(𝑆𝑥)) + (norm‘(𝑇𝑥))))
3320, 23, 32syl2anc 586 . . . . . 6 (𝑥 ∈ ℋ → (norm‘((𝑆𝑥) + (𝑇𝑥))) ≤ ((norm‘(𝑆𝑥)) + (norm‘(𝑇𝑥))))
3431, 33eqbrtrd 5081 . . . . 5 (𝑥 ∈ ℋ → (norm‘((𝑆 +op 𝑇)‘𝑥)) ≤ ((norm‘(𝑆𝑥)) + (norm‘(𝑇𝑥))))
3534adantr 483 . . . 4 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘((𝑆 +op 𝑇)‘𝑥)) ≤ ((norm‘(𝑆𝑥)) + (norm‘(𝑇𝑥))))
36 nmoplb 29678 . . . . . 6 ((𝑆: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(𝑆𝑥)) ≤ (normop𝑆))
373, 36mp3an1 1444 . . . . 5 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(𝑆𝑥)) ≤ (normop𝑆))
38 nmoplb 29678 . . . . . 6 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(𝑇𝑥)) ≤ (normop𝑇))
396, 38mp3an1 1444 . . . . 5 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(𝑇𝑥)) ≤ (normop𝑇))
40 le2add 11116 . . . . . . . 8 ((((norm‘(𝑆𝑥)) ∈ ℝ ∧ (norm‘(𝑇𝑥)) ∈ ℝ) ∧ ((normop𝑆) ∈ ℝ ∧ (normop𝑇) ∈ ℝ)) → (((norm‘(𝑆𝑥)) ≤ (normop𝑆) ∧ (norm‘(𝑇𝑥)) ≤ (normop𝑇)) → ((norm‘(𝑆𝑥)) + (norm‘(𝑇𝑥))) ≤ ((normop𝑆) + (normop𝑇))))
419, 11, 40mpanr12 703 . . . . . . 7 (((norm‘(𝑆𝑥)) ∈ ℝ ∧ (norm‘(𝑇𝑥)) ∈ ℝ) → (((norm‘(𝑆𝑥)) ≤ (normop𝑆) ∧ (norm‘(𝑇𝑥)) ≤ (normop𝑇)) → ((norm‘(𝑆𝑥)) + (norm‘(𝑇𝑥))) ≤ ((normop𝑆) + (normop𝑇))))
4222, 25, 41syl2anc 586 . . . . . 6 (𝑥 ∈ ℋ → (((norm‘(𝑆𝑥)) ≤ (normop𝑆) ∧ (norm‘(𝑇𝑥)) ≤ (normop𝑇)) → ((norm‘(𝑆𝑥)) + (norm‘(𝑇𝑥))) ≤ ((normop𝑆) + (normop𝑇))))
4342adantr 483 . . . . 5 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (((norm‘(𝑆𝑥)) ≤ (normop𝑆) ∧ (norm‘(𝑇𝑥)) ≤ (normop𝑇)) → ((norm‘(𝑆𝑥)) + (norm‘(𝑇𝑥))) ≤ ((normop𝑆) + (normop𝑇))))
4437, 39, 43mp2and 697 . . . 4 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((norm‘(𝑆𝑥)) + (norm‘(𝑇𝑥))) ≤ ((normop𝑆) + (normop𝑇)))
4519, 27, 28, 35, 44letrd 10791 . . 3 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘((𝑆 +op 𝑇)‘𝑥)) ≤ ((normop𝑆) + (normop𝑇)))
4645ex 415 . 2 (𝑥 ∈ ℋ → ((norm𝑥) ≤ 1 → (norm‘((𝑆 +op 𝑇)‘𝑥)) ≤ ((normop𝑆) + (normop𝑇))))
4715, 46mprgbir 3153 1 (normop‘(𝑆 +op 𝑇)) ≤ ((normop𝑆) + (normop𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wral 3138   class class class wbr 5059  wf 6346  cfv 6350  (class class class)co 7150  cr 10530  1c1 10532   + caddc 10534  *cxr 10668  cle 10670  chba 28690   + cva 28691  normcno 28694   +op chos 28709  normopcnop 28716  BndLinOpcbo 28719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-hilex 28770  ax-hfvadd 28771  ax-hvcom 28772  ax-hvass 28773  ax-hv0cl 28774  ax-hvaddid 28775  ax-hfvmul 28776  ax-hvmulid 28777  ax-hvmulass 28778  ax-hvdistr1 28779  ax-hvdistr2 28780  ax-hvmul0 28781  ax-hfi 28850  ax-his1 28853  ax-his2 28854  ax-his3 28855  ax-his4 28856
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-seq 13364  df-exp 13424  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-grpo 28264  df-gid 28265  df-ablo 28316  df-vc 28330  df-nv 28363  df-va 28366  df-ba 28367  df-sm 28368  df-0v 28369  df-nmcv 28371  df-hnorm 28739  df-hba 28740  df-hvsub 28742  df-hosum 29501  df-nmop 29610  df-lnop 29612  df-bdop 29613
This theorem is referenced by:  bdophsi  29867  nmoptri2i  29870  unierri  29875
  Copyright terms: Public domain W3C validator