MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmosetre Structured version   Visualization version   GIF version

Theorem nmosetre 28535
Description: The set in the supremum of the operator norm definition df-nmoo 28516 is a set of reals. (Contributed by NM, 13-Nov-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmosetre.2 𝑌 = (BaseSet‘𝑊)
nmosetre.4 𝑁 = (normCV𝑊)
Assertion
Ref Expression
nmosetre ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → {𝑥 ∣ ∃𝑧𝑋 ((𝑀𝑧) ≤ 1 ∧ 𝑥 = (𝑁‘(𝑇𝑧)))} ⊆ ℝ)
Distinct variable groups:   𝑥,𝑧,𝑇   𝑥,𝑊,𝑧   𝑥,𝑋,𝑧   𝑥,𝑌,𝑧
Allowed substitution hints:   𝑀(𝑥,𝑧)   𝑁(𝑥,𝑧)

Proof of Theorem nmosetre
StepHypRef Expression
1 ffvelrn 6843 . . . . . . . 8 ((𝑇:𝑋𝑌𝑧𝑋) → (𝑇𝑧) ∈ 𝑌)
2 nmosetre.2 . . . . . . . . 9 𝑌 = (BaseSet‘𝑊)
3 nmosetre.4 . . . . . . . . 9 𝑁 = (normCV𝑊)
42, 3nvcl 28432 . . . . . . . 8 ((𝑊 ∈ NrmCVec ∧ (𝑇𝑧) ∈ 𝑌) → (𝑁‘(𝑇𝑧)) ∈ ℝ)
51, 4sylan2 594 . . . . . . 7 ((𝑊 ∈ NrmCVec ∧ (𝑇:𝑋𝑌𝑧𝑋)) → (𝑁‘(𝑇𝑧)) ∈ ℝ)
65anassrs 470 . . . . . 6 (((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) ∧ 𝑧𝑋) → (𝑁‘(𝑇𝑧)) ∈ ℝ)
7 eleq1 2900 . . . . . 6 (𝑥 = (𝑁‘(𝑇𝑧)) → (𝑥 ∈ ℝ ↔ (𝑁‘(𝑇𝑧)) ∈ ℝ))
86, 7syl5ibr 248 . . . . 5 (𝑥 = (𝑁‘(𝑇𝑧)) → (((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) ∧ 𝑧𝑋) → 𝑥 ∈ ℝ))
98impcom 410 . . . 4 ((((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) ∧ 𝑧𝑋) ∧ 𝑥 = (𝑁‘(𝑇𝑧))) → 𝑥 ∈ ℝ)
109adantrl 714 . . 3 ((((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) ∧ 𝑧𝑋) ∧ ((𝑀𝑧) ≤ 1 ∧ 𝑥 = (𝑁‘(𝑇𝑧)))) → 𝑥 ∈ ℝ)
1110rexlimdva2 3287 . 2 ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (∃𝑧𝑋 ((𝑀𝑧) ≤ 1 ∧ 𝑥 = (𝑁‘(𝑇𝑧))) → 𝑥 ∈ ℝ))
1211abssdv 4044 1 ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → {𝑥 ∣ ∃𝑧𝑋 ((𝑀𝑧) ≤ 1 ∧ 𝑥 = (𝑁‘(𝑇𝑧)))} ⊆ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  {cab 2799  wrex 3139  wss 3935   class class class wbr 5058  wf 6345  cfv 6349  cr 10530  1c1 10532  cle 10670  NrmCVeccnv 28355  BaseSetcba 28357  normCVcnmcv 28361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-oprab 7154  df-1st 7683  df-2nd 7684  df-vc 28330  df-nv 28363  df-va 28366  df-ba 28367  df-sm 28368  df-0v 28369  df-nmcv 28371
This theorem is referenced by:  nmoxr  28537  nmooge0  28538  nmorepnf  28539  nmoolb  28542  nmoubi  28543  nmlno0lem  28564  nmopsetretHIL  29635
  Copyright terms: Public domain W3C validator