MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoubi Structured version   Visualization version   GIF version

Theorem nmoubi 27473
Description: An upper bound for an operator norm. (Contributed by NM, 11-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoubi.1 𝑋 = (BaseSet‘𝑈)
nmoubi.y 𝑌 = (BaseSet‘𝑊)
nmoubi.l 𝐿 = (normCV𝑈)
nmoubi.m 𝑀 = (normCV𝑊)
nmoubi.3 𝑁 = (𝑈 normOpOLD 𝑊)
nmoubi.u 𝑈 ∈ NrmCVec
nmoubi.w 𝑊 ∈ NrmCVec
Assertion
Ref Expression
nmoubi ((𝑇:𝑋𝑌𝐴 ∈ ℝ*) → ((𝑁𝑇) ≤ 𝐴 ↔ ∀𝑥𝑋 ((𝐿𝑥) ≤ 1 → (𝑀‘(𝑇𝑥)) ≤ 𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐿   𝑥,𝑈   𝑥,𝑊   𝑥,𝑌   𝑥,𝑀   𝑥,𝑇   𝑥,𝑋
Allowed substitution hint:   𝑁(𝑥)

Proof of Theorem nmoubi
Dummy variables 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmoubi.u . . . . . 6 𝑈 ∈ NrmCVec
2 nmoubi.w . . . . . 6 𝑊 ∈ NrmCVec
3 nmoubi.1 . . . . . . 7 𝑋 = (BaseSet‘𝑈)
4 nmoubi.y . . . . . . 7 𝑌 = (BaseSet‘𝑊)
5 nmoubi.l . . . . . . 7 𝐿 = (normCV𝑈)
6 nmoubi.m . . . . . . 7 𝑀 = (normCV𝑊)
7 nmoubi.3 . . . . . . 7 𝑁 = (𝑈 normOpOLD 𝑊)
83, 4, 5, 6, 7nmooval 27464 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (𝑁𝑇) = sup({𝑦 ∣ ∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑥)))}, ℝ*, < ))
91, 2, 8mp3an12 1411 . . . . 5 (𝑇:𝑋𝑌 → (𝑁𝑇) = sup({𝑦 ∣ ∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑥)))}, ℝ*, < ))
109breq1d 4623 . . . 4 (𝑇:𝑋𝑌 → ((𝑁𝑇) ≤ 𝐴 ↔ sup({𝑦 ∣ ∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑥)))}, ℝ*, < ) ≤ 𝐴))
1110adantr 481 . . 3 ((𝑇:𝑋𝑌𝐴 ∈ ℝ*) → ((𝑁𝑇) ≤ 𝐴 ↔ sup({𝑦 ∣ ∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑥)))}, ℝ*, < ) ≤ 𝐴))
124, 6nmosetre 27465 . . . . . 6 ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → {𝑦 ∣ ∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑥)))} ⊆ ℝ)
132, 12mpan 705 . . . . 5 (𝑇:𝑋𝑌 → {𝑦 ∣ ∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑥)))} ⊆ ℝ)
14 ressxr 10027 . . . . 5 ℝ ⊆ ℝ*
1513, 14syl6ss 3595 . . . 4 (𝑇:𝑋𝑌 → {𝑦 ∣ ∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑥)))} ⊆ ℝ*)
16 supxrleub 12099 . . . 4 (({𝑦 ∣ ∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑥)))} ⊆ ℝ*𝐴 ∈ ℝ*) → (sup({𝑦 ∣ ∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑥)))}, ℝ*, < ) ≤ 𝐴 ↔ ∀𝑧 ∈ {𝑦 ∣ ∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑥)))}𝑧𝐴))
1715, 16sylan 488 . . 3 ((𝑇:𝑋𝑌𝐴 ∈ ℝ*) → (sup({𝑦 ∣ ∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑥)))}, ℝ*, < ) ≤ 𝐴 ↔ ∀𝑧 ∈ {𝑦 ∣ ∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑥)))}𝑧𝐴))
1811, 17bitrd 268 . 2 ((𝑇:𝑋𝑌𝐴 ∈ ℝ*) → ((𝑁𝑇) ≤ 𝐴 ↔ ∀𝑧 ∈ {𝑦 ∣ ∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑥)))}𝑧𝐴))
19 eqeq1 2625 . . . . . 6 (𝑦 = 𝑧 → (𝑦 = (𝑀‘(𝑇𝑥)) ↔ 𝑧 = (𝑀‘(𝑇𝑥))))
2019anbi2d 739 . . . . 5 (𝑦 = 𝑧 → (((𝐿𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑥))) ↔ ((𝐿𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇𝑥)))))
2120rexbidv 3045 . . . 4 (𝑦 = 𝑧 → (∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑥))) ↔ ∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇𝑥)))))
2221ralab 3349 . . 3 (∀𝑧 ∈ {𝑦 ∣ ∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑥)))}𝑧𝐴 ↔ ∀𝑧(∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇𝑥))) → 𝑧𝐴))
23 ralcom4 3210 . . . 4 (∀𝑥𝑋𝑧(((𝐿𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇𝑥))) → 𝑧𝐴) ↔ ∀𝑧𝑥𝑋 (((𝐿𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇𝑥))) → 𝑧𝐴))
24 ancomst 468 . . . . . . . 8 ((((𝐿𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇𝑥))) → 𝑧𝐴) ↔ ((𝑧 = (𝑀‘(𝑇𝑥)) ∧ (𝐿𝑥) ≤ 1) → 𝑧𝐴))
25 impexp 462 . . . . . . . 8 (((𝑧 = (𝑀‘(𝑇𝑥)) ∧ (𝐿𝑥) ≤ 1) → 𝑧𝐴) ↔ (𝑧 = (𝑀‘(𝑇𝑥)) → ((𝐿𝑥) ≤ 1 → 𝑧𝐴)))
2624, 25bitri 264 . . . . . . 7 ((((𝐿𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇𝑥))) → 𝑧𝐴) ↔ (𝑧 = (𝑀‘(𝑇𝑥)) → ((𝐿𝑥) ≤ 1 → 𝑧𝐴)))
2726albii 1744 . . . . . 6 (∀𝑧(((𝐿𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇𝑥))) → 𝑧𝐴) ↔ ∀𝑧(𝑧 = (𝑀‘(𝑇𝑥)) → ((𝐿𝑥) ≤ 1 → 𝑧𝐴)))
28 fvex 6158 . . . . . . 7 (𝑀‘(𝑇𝑥)) ∈ V
29 breq1 4616 . . . . . . . 8 (𝑧 = (𝑀‘(𝑇𝑥)) → (𝑧𝐴 ↔ (𝑀‘(𝑇𝑥)) ≤ 𝐴))
3029imbi2d 330 . . . . . . 7 (𝑧 = (𝑀‘(𝑇𝑥)) → (((𝐿𝑥) ≤ 1 → 𝑧𝐴) ↔ ((𝐿𝑥) ≤ 1 → (𝑀‘(𝑇𝑥)) ≤ 𝐴)))
3128, 30ceqsalv 3219 . . . . . 6 (∀𝑧(𝑧 = (𝑀‘(𝑇𝑥)) → ((𝐿𝑥) ≤ 1 → 𝑧𝐴)) ↔ ((𝐿𝑥) ≤ 1 → (𝑀‘(𝑇𝑥)) ≤ 𝐴))
3227, 31bitri 264 . . . . 5 (∀𝑧(((𝐿𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇𝑥))) → 𝑧𝐴) ↔ ((𝐿𝑥) ≤ 1 → (𝑀‘(𝑇𝑥)) ≤ 𝐴))
3332ralbii 2974 . . . 4 (∀𝑥𝑋𝑧(((𝐿𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇𝑥))) → 𝑧𝐴) ↔ ∀𝑥𝑋 ((𝐿𝑥) ≤ 1 → (𝑀‘(𝑇𝑥)) ≤ 𝐴))
34 r19.23v 3016 . . . . 5 (∀𝑥𝑋 (((𝐿𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇𝑥))) → 𝑧𝐴) ↔ (∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇𝑥))) → 𝑧𝐴))
3534albii 1744 . . . 4 (∀𝑧𝑥𝑋 (((𝐿𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇𝑥))) → 𝑧𝐴) ↔ ∀𝑧(∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇𝑥))) → 𝑧𝐴))
3623, 33, 353bitr3i 290 . . 3 (∀𝑥𝑋 ((𝐿𝑥) ≤ 1 → (𝑀‘(𝑇𝑥)) ≤ 𝐴) ↔ ∀𝑧(∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇𝑥))) → 𝑧𝐴))
3722, 36bitr4i 267 . 2 (∀𝑧 ∈ {𝑦 ∣ ∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑥)))}𝑧𝐴 ↔ ∀𝑥𝑋 ((𝐿𝑥) ≤ 1 → (𝑀‘(𝑇𝑥)) ≤ 𝐴))
3818, 37syl6bb 276 1 ((𝑇:𝑋𝑌𝐴 ∈ ℝ*) → ((𝑁𝑇) ≤ 𝐴 ↔ ∀𝑥𝑋 ((𝐿𝑥) ≤ 1 → (𝑀‘(𝑇𝑥)) ≤ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wal 1478   = wceq 1480  wcel 1987  {cab 2607  wral 2907  wrex 2908  wss 3555   class class class wbr 4613  wf 5843  cfv 5847  (class class class)co 6604  supcsup 8290  cr 9879  1c1 9881  *cxr 10017   < clt 10018  cle 10019  NrmCVeccnv 27285  BaseSetcba 27287  normCVcnmcv 27291   normOpOLD cnmoo 27442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-po 4995  df-so 4996  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-1st 7113  df-2nd 7114  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-sup 8292  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-vc 27260  df-nv 27293  df-va 27296  df-ba 27297  df-sm 27298  df-0v 27299  df-nmcv 27301  df-nmoo 27446
This theorem is referenced by:  nmoub3i  27474  nmobndi  27476  ubthlem2  27573
  Copyright terms: Public domain W3C validator