MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmounbi Structured version   Visualization version   GIF version

Theorem nmounbi 27492
Description: Two ways two express that an operator is unbounded. (Contributed by NM, 11-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoubi.1 𝑋 = (BaseSet‘𝑈)
nmoubi.y 𝑌 = (BaseSet‘𝑊)
nmoubi.l 𝐿 = (normCV𝑈)
nmoubi.m 𝑀 = (normCV𝑊)
nmoubi.3 𝑁 = (𝑈 normOpOLD 𝑊)
nmoubi.u 𝑈 ∈ NrmCVec
nmoubi.w 𝑊 ∈ NrmCVec
Assertion
Ref Expression
nmounbi (𝑇:𝑋𝑌 → ((𝑁𝑇) = +∞ ↔ ∀𝑟 ∈ ℝ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇𝑦)))))
Distinct variable groups:   𝑦,𝑟,𝐿   𝑦,𝑈   𝑦,𝑊   𝑌,𝑟,𝑦   𝑀,𝑟,𝑦   𝑇,𝑟,𝑦   𝑋,𝑟,𝑦   𝑁,𝑟,𝑦
Allowed substitution hints:   𝑈(𝑟)   𝑊(𝑟)

Proof of Theorem nmounbi
StepHypRef Expression
1 nmoubi.1 . . . 4 𝑋 = (BaseSet‘𝑈)
2 nmoubi.y . . . 4 𝑌 = (BaseSet‘𝑊)
3 nmoubi.l . . . 4 𝐿 = (normCV𝑈)
4 nmoubi.m . . . 4 𝑀 = (normCV𝑊)
5 nmoubi.3 . . . 4 𝑁 = (𝑈 normOpOLD 𝑊)
6 nmoubi.u . . . 4 𝑈 ∈ NrmCVec
7 nmoubi.w . . . 4 𝑊 ∈ NrmCVec
81, 2, 3, 4, 5, 6, 7nmobndi 27491 . . 3 (𝑇:𝑋𝑌 → ((𝑁𝑇) ∈ ℝ ↔ ∃𝑟 ∈ ℝ ∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑟)))
91, 2, 5nmorepnf 27484 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → ((𝑁𝑇) ∈ ℝ ↔ (𝑁𝑇) ≠ +∞))
106, 7, 9mp3an12 1411 . . 3 (𝑇:𝑋𝑌 → ((𝑁𝑇) ∈ ℝ ↔ (𝑁𝑇) ≠ +∞))
11 ffvelrn 6315 . . . . . . . . . . . 12 ((𝑇:𝑋𝑌𝑦𝑋) → (𝑇𝑦) ∈ 𝑌)
122, 4nvcl 27377 . . . . . . . . . . . 12 ((𝑊 ∈ NrmCVec ∧ (𝑇𝑦) ∈ 𝑌) → (𝑀‘(𝑇𝑦)) ∈ ℝ)
137, 11, 12sylancr 694 . . . . . . . . . . 11 ((𝑇:𝑋𝑌𝑦𝑋) → (𝑀‘(𝑇𝑦)) ∈ ℝ)
14 lenlt 10063 . . . . . . . . . . 11 (((𝑀‘(𝑇𝑦)) ∈ ℝ ∧ 𝑟 ∈ ℝ) → ((𝑀‘(𝑇𝑦)) ≤ 𝑟 ↔ ¬ 𝑟 < (𝑀‘(𝑇𝑦))))
1513, 14sylan 488 . . . . . . . . . 10 (((𝑇:𝑋𝑌𝑦𝑋) ∧ 𝑟 ∈ ℝ) → ((𝑀‘(𝑇𝑦)) ≤ 𝑟 ↔ ¬ 𝑟 < (𝑀‘(𝑇𝑦))))
1615an32s 845 . . . . . . . . 9 (((𝑇:𝑋𝑌𝑟 ∈ ℝ) ∧ 𝑦𝑋) → ((𝑀‘(𝑇𝑦)) ≤ 𝑟 ↔ ¬ 𝑟 < (𝑀‘(𝑇𝑦))))
1716imbi2d 330 . . . . . . . 8 (((𝑇:𝑋𝑌𝑟 ∈ ℝ) ∧ 𝑦𝑋) → (((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑟) ↔ ((𝐿𝑦) ≤ 1 → ¬ 𝑟 < (𝑀‘(𝑇𝑦)))))
18 imnan 438 . . . . . . . 8 (((𝐿𝑦) ≤ 1 → ¬ 𝑟 < (𝑀‘(𝑇𝑦))) ↔ ¬ ((𝐿𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇𝑦))))
1917, 18syl6bb 276 . . . . . . 7 (((𝑇:𝑋𝑌𝑟 ∈ ℝ) ∧ 𝑦𝑋) → (((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑟) ↔ ¬ ((𝐿𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇𝑦)))))
2019ralbidva 2979 . . . . . 6 ((𝑇:𝑋𝑌𝑟 ∈ ℝ) → (∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑟) ↔ ∀𝑦𝑋 ¬ ((𝐿𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇𝑦)))))
21 ralnex 2986 . . . . . 6 (∀𝑦𝑋 ¬ ((𝐿𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇𝑦))) ↔ ¬ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇𝑦))))
2220, 21syl6bb 276 . . . . 5 ((𝑇:𝑋𝑌𝑟 ∈ ℝ) → (∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑟) ↔ ¬ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇𝑦)))))
2322rexbidva 3042 . . . 4 (𝑇:𝑋𝑌 → (∃𝑟 ∈ ℝ ∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑟) ↔ ∃𝑟 ∈ ℝ ¬ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇𝑦)))))
24 rexnal 2989 . . . 4 (∃𝑟 ∈ ℝ ¬ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇𝑦))) ↔ ¬ ∀𝑟 ∈ ℝ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇𝑦))))
2523, 24syl6bb 276 . . 3 (𝑇:𝑋𝑌 → (∃𝑟 ∈ ℝ ∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑟) ↔ ¬ ∀𝑟 ∈ ℝ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇𝑦)))))
268, 10, 253bitr3d 298 . 2 (𝑇:𝑋𝑌 → ((𝑁𝑇) ≠ +∞ ↔ ¬ ∀𝑟 ∈ ℝ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇𝑦)))))
2726necon4abid 2830 1 (𝑇:𝑋𝑌 → ((𝑁𝑇) = +∞ ↔ ∀𝑟 ∈ ℝ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wne 2790  wral 2907  wrex 2908   class class class wbr 4615  wf 5845  cfv 5849  (class class class)co 6607  cr 9882  1c1 9884  +∞cpnf 10018   < clt 10021  cle 10022  NrmCVeccnv 27300  BaseSetcba 27302  normCVcnmcv 27306   normOpOLD cnmoo 27457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4733  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-cnex 9939  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960  ax-pre-sup 9961
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-iun 4489  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-om 7016  df-1st 7116  df-2nd 7117  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-er 7690  df-map 7807  df-en 7903  df-dom 7904  df-sdom 7905  df-sup 8295  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-div 10632  df-nn 10968  df-2 11026  df-3 11027  df-n0 11240  df-z 11325  df-uz 11635  df-rp 11780  df-seq 12745  df-exp 12804  df-cj 13776  df-re 13777  df-im 13778  df-sqrt 13912  df-abs 13913  df-grpo 27208  df-gid 27209  df-ginv 27210  df-ablo 27260  df-vc 27275  df-nv 27308  df-va 27311  df-ba 27312  df-sm 27313  df-0v 27314  df-nmcv 27316  df-nmoo 27461
This theorem is referenced by:  nmounbseqi  27493  nmounbseqiALT  27494
  Copyright terms: Public domain W3C validator