MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmpar Structured version   Visualization version   GIF version

Theorem nmpar 23239
Description: A subcomplex pre-Hilbert space satisfies the parallelogram law. (Contributed by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
nmpar.v 𝑉 = (Base‘𝑊)
nmpar.p + = (+g𝑊)
nmpar.m = (-g𝑊)
nmpar.n 𝑁 = (norm‘𝑊)
Assertion
Ref Expression
nmpar ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉𝐵𝑉) → (((𝑁‘(𝐴 + 𝐵))↑2) + ((𝑁‘(𝐴 𝐵))↑2)) = (2 · (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2))))

Proof of Theorem nmpar
StepHypRef Expression
1 nmpar.v . 2 𝑉 = (Base‘𝑊)
2 nmpar.p . 2 + = (+g𝑊)
3 nmpar.m . 2 = (-g𝑊)
4 nmpar.n . 2 𝑁 = (norm‘𝑊)
5 eqid 2760 . 2 (·𝑖𝑊) = (·𝑖𝑊)
6 eqid 2760 . 2 (Scalar‘𝑊) = (Scalar‘𝑊)
7 eqid 2760 . 2 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
8 simp1 1131 . 2 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉𝐵𝑉) → 𝑊 ∈ ℂPreHil)
9 simp2 1132 . 2 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉𝐵𝑉) → 𝐴𝑉)
10 simp3 1133 . 2 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉𝐵𝑉) → 𝐵𝑉)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10nmparlem 23238 1 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉𝐵𝑉) → (((𝑁‘(𝐴 + 𝐵))↑2) + ((𝑁‘(𝐴 𝐵))↑2)) = (2 · (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1072   = wceq 1632  wcel 2139  cfv 6049  (class class class)co 6813   + caddc 10131   · cmul 10133  2c2 11262  cexp 13054  Basecbs 16059  +gcplusg 16143  Scalarcsca 16146  ·𝑖cip 16148  -gcsg 17625  normcnm 22582  ℂPreHilccph 23166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206  ax-addf 10207  ax-mulf 10208
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-tpos 7521  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-map 8025  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-sup 8513  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-z 11570  df-dec 11686  df-uz 11880  df-rp 12026  df-fz 12520  df-seq 12996  df-exp 13055  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-mulr 16157  df-starv 16158  df-sca 16159  df-vsca 16160  df-ip 16161  df-tset 16162  df-ple 16163  df-ds 16166  df-unif 16167  df-0g 16304  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-mhm 17536  df-grp 17626  df-minusg 17627  df-sbg 17628  df-subg 17792  df-ghm 17859  df-cmn 18395  df-abl 18396  df-mgp 18690  df-ur 18702  df-ring 18749  df-cring 18750  df-oppr 18823  df-dvdsr 18841  df-unit 18842  df-rnghom 18917  df-drng 18951  df-subrg 18980  df-staf 19047  df-srng 19048  df-lmod 19067  df-lmhm 19224  df-lvec 19305  df-sra 19374  df-rgmod 19375  df-cnfld 19949  df-phl 20173  df-nlm 22592  df-clm 23063  df-cph 23168
This theorem is referenced by:  minveclem2  23397
  Copyright terms: Public domain W3C validator