MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmvs Structured version   Visualization version   GIF version

Theorem nmvs 22527
Description: Defining property of a normed module. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
isnlm.v 𝑉 = (Base‘𝑊)
isnlm.n 𝑁 = (norm‘𝑊)
isnlm.s · = ( ·𝑠𝑊)
isnlm.f 𝐹 = (Scalar‘𝑊)
isnlm.k 𝐾 = (Base‘𝐹)
isnlm.a 𝐴 = (norm‘𝐹)
Assertion
Ref Expression
nmvs ((𝑊 ∈ NrmMod ∧ 𝑋𝐾𝑌𝑉) → (𝑁‘(𝑋 · 𝑌)) = ((𝐴𝑋) · (𝑁𝑌)))

Proof of Theorem nmvs
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isnlm.v . . . . 5 𝑉 = (Base‘𝑊)
2 isnlm.n . . . . 5 𝑁 = (norm‘𝑊)
3 isnlm.s . . . . 5 · = ( ·𝑠𝑊)
4 isnlm.f . . . . 5 𝐹 = (Scalar‘𝑊)
5 isnlm.k . . . . 5 𝐾 = (Base‘𝐹)
6 isnlm.a . . . . 5 𝐴 = (norm‘𝐹)
71, 2, 3, 4, 5, 6isnlm 22526 . . . 4 (𝑊 ∈ NrmMod ↔ ((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ ∀𝑥𝐾𝑦𝑉 (𝑁‘(𝑥 · 𝑦)) = ((𝐴𝑥) · (𝑁𝑦))))
87simprbi 479 . . 3 (𝑊 ∈ NrmMod → ∀𝑥𝐾𝑦𝑉 (𝑁‘(𝑥 · 𝑦)) = ((𝐴𝑥) · (𝑁𝑦)))
9 oveq1 6697 . . . . . 6 (𝑥 = 𝑋 → (𝑥 · 𝑦) = (𝑋 · 𝑦))
109fveq2d 6233 . . . . 5 (𝑥 = 𝑋 → (𝑁‘(𝑥 · 𝑦)) = (𝑁‘(𝑋 · 𝑦)))
11 fveq2 6229 . . . . . 6 (𝑥 = 𝑋 → (𝐴𝑥) = (𝐴𝑋))
1211oveq1d 6705 . . . . 5 (𝑥 = 𝑋 → ((𝐴𝑥) · (𝑁𝑦)) = ((𝐴𝑋) · (𝑁𝑦)))
1310, 12eqeq12d 2666 . . . 4 (𝑥 = 𝑋 → ((𝑁‘(𝑥 · 𝑦)) = ((𝐴𝑥) · (𝑁𝑦)) ↔ (𝑁‘(𝑋 · 𝑦)) = ((𝐴𝑋) · (𝑁𝑦))))
14 oveq2 6698 . . . . . 6 (𝑦 = 𝑌 → (𝑋 · 𝑦) = (𝑋 · 𝑌))
1514fveq2d 6233 . . . . 5 (𝑦 = 𝑌 → (𝑁‘(𝑋 · 𝑦)) = (𝑁‘(𝑋 · 𝑌)))
16 fveq2 6229 . . . . . 6 (𝑦 = 𝑌 → (𝑁𝑦) = (𝑁𝑌))
1716oveq2d 6706 . . . . 5 (𝑦 = 𝑌 → ((𝐴𝑋) · (𝑁𝑦)) = ((𝐴𝑋) · (𝑁𝑌)))
1815, 17eqeq12d 2666 . . . 4 (𝑦 = 𝑌 → ((𝑁‘(𝑋 · 𝑦)) = ((𝐴𝑋) · (𝑁𝑦)) ↔ (𝑁‘(𝑋 · 𝑌)) = ((𝐴𝑋) · (𝑁𝑌))))
1913, 18rspc2v 3353 . . 3 ((𝑋𝐾𝑌𝑉) → (∀𝑥𝐾𝑦𝑉 (𝑁‘(𝑥 · 𝑦)) = ((𝐴𝑥) · (𝑁𝑦)) → (𝑁‘(𝑋 · 𝑌)) = ((𝐴𝑋) · (𝑁𝑌))))
208, 19syl5com 31 . 2 (𝑊 ∈ NrmMod → ((𝑋𝐾𝑌𝑉) → (𝑁‘(𝑋 · 𝑌)) = ((𝐴𝑋) · (𝑁𝑌))))
21203impib 1281 1 ((𝑊 ∈ NrmMod ∧ 𝑋𝐾𝑌𝑉) → (𝑁‘(𝑋 · 𝑌)) = ((𝐴𝑋) · (𝑁𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1054   = wceq 1523  wcel 2030  wral 2941  cfv 5926  (class class class)co 6690   · cmul 9979  Basecbs 15904  Scalarcsca 15991   ·𝑠 cvsca 15992  LModclmod 18911  normcnm 22428  NrmGrpcngp 22429  NrmRingcnrg 22431  NrmModcnlm 22432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-nul 4822
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-iota 5889  df-fv 5934  df-ov 6693  df-nlm 22438
This theorem is referenced by:  nlmdsdi  22532  nlmdsdir  22533  nlmmul0or  22534  lssnlm  22552  nmoleub2lem3  22961  nmoleub3  22965  ncvsprp  22998  cphnmvs  23036  nmmulg  30140
  Copyright terms: Public domain W3C validator