MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmznsg Structured version   Visualization version   GIF version

Theorem nmznsg 17559
Description: Any subgroup is a normal subgroup of its normalizer. (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypotheses
Ref Expression
elnmz.1 𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)}
nmzsubg.2 𝑋 = (Base‘𝐺)
nmzsubg.3 + = (+g𝐺)
nmznsg.4 𝐻 = (𝐺s 𝑁)
Assertion
Ref Expression
nmznsg (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ∈ (NrmSGrp‘𝐻))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝑆,𝑦   𝑥, + ,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐻(𝑥,𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem nmznsg
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))
2 elnmz.1 . . . 4 𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)}
3 nmzsubg.2 . . . 4 𝑋 = (Base‘𝐺)
4 nmzsubg.3 . . . 4 + = (+g𝐺)
52, 3, 4ssnmz 17557 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆𝑁)
6 subgrcl 17520 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
72, 3, 4nmzsubg 17556 . . . . 5 (𝐺 ∈ Grp → 𝑁 ∈ (SubGrp‘𝐺))
86, 7syl 17 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝑁 ∈ (SubGrp‘𝐺))
9 nmznsg.4 . . . . 5 𝐻 = (𝐺s 𝑁)
109subsubg 17538 . . . 4 (𝑁 ∈ (SubGrp‘𝐺) → (𝑆 ∈ (SubGrp‘𝐻) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝑁)))
118, 10syl 17 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → (𝑆 ∈ (SubGrp‘𝐻) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝑁)))
121, 5, 11mpbir2and 956 . 2 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐻))
13 ssrab2 3666 . . . . . . 7 {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)} ⊆ 𝑋
142, 13eqsstri 3614 . . . . . 6 𝑁𝑋
1514sseli 3579 . . . . 5 (𝑤𝑁𝑤𝑋)
162nmzbi 17555 . . . . 5 ((𝑧𝑁𝑤𝑋) → ((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆))
1715, 16sylan2 491 . . . 4 ((𝑧𝑁𝑤𝑁) → ((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆))
1817rgen2a 2971 . . 3 𝑧𝑁𝑤𝑁 ((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆)
199subgbas 17519 . . . . 5 (𝑁 ∈ (SubGrp‘𝐺) → 𝑁 = (Base‘𝐻))
208, 19syl 17 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝑁 = (Base‘𝐻))
2120raleqdv 3133 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → (∀𝑤𝑁 ((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆) ↔ ∀𝑤 ∈ (Base‘𝐻)((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆)))
2220, 21raleqbidv 3141 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → (∀𝑧𝑁𝑤𝑁 ((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆) ↔ ∀𝑧 ∈ (Base‘𝐻)∀𝑤 ∈ (Base‘𝐻)((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆)))
2318, 22mpbii 223 . 2 (𝑆 ∈ (SubGrp‘𝐺) → ∀𝑧 ∈ (Base‘𝐻)∀𝑤 ∈ (Base‘𝐻)((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆))
24 eqid 2621 . . 3 (Base‘𝐻) = (Base‘𝐻)
25 fvex 6158 . . . . . 6 (Base‘𝐺) ∈ V
263, 25eqeltri 2694 . . . . 5 𝑋 ∈ V
2726, 14ssexi 4763 . . . 4 𝑁 ∈ V
289, 4ressplusg 15914 . . . 4 (𝑁 ∈ V → + = (+g𝐻))
2927, 28ax-mp 5 . . 3 + = (+g𝐻)
3024, 29isnsg 17544 . 2 (𝑆 ∈ (NrmSGrp‘𝐻) ↔ (𝑆 ∈ (SubGrp‘𝐻) ∧ ∀𝑧 ∈ (Base‘𝐻)∀𝑤 ∈ (Base‘𝐻)((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆)))
3112, 23, 30sylanbrc 697 1 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ∈ (NrmSGrp‘𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wral 2907  {crab 2911  Vcvv 3186  wss 3555  cfv 5847  (class class class)co 6604  Basecbs 15781  s cress 15782  +gcplusg 15862  Grpcgrp 17343  SubGrpcsubg 17509  NrmSGrpcnsg 17510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-0g 16023  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-grp 17346  df-minusg 17347  df-sbg 17348  df-subg 17512  df-nsg 17513
This theorem is referenced by:  sylow3lem4  17966  sylow3lem6  17968
  Copyright terms: Public domain W3C validator