MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn01to3 Structured version   Visualization version   GIF version

Theorem nn01to3 11725
Description: A (nonnegative) integer between 1 and 3 must be 1, 2 or 3. (Contributed by Alexander van der Vekens, 13-Sep-2018.)
Assertion
Ref Expression
nn01to3 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3))

Proof of Theorem nn01to3
StepHypRef Expression
1 3mix3 1230 . . 3 (𝑁 = 3 → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3))
21a1d 25 . 2 (𝑁 = 3 → ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3)))
3 nn0re 11245 . . . . . . . . . 10 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
433ad2ant1 1080 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → 𝑁 ∈ ℝ)
5 3re 11038 . . . . . . . . . 10 3 ∈ ℝ
65a1i 11 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → 3 ∈ ℝ)
7 simp3 1061 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → 𝑁 ≤ 3)
84, 6, 7leltned 10134 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (𝑁 < 3 ↔ 3 ≠ 𝑁))
9 nesym 2846 . . . . . . . 8 (3 ≠ 𝑁 ↔ ¬ 𝑁 = 3)
108, 9syl6rbb 277 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (¬ 𝑁 = 3 ↔ 𝑁 < 3))
11 elnnnn0c 11282 . . . . . . . . 9 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁))
12 orc 400 . . . . . . . . . . . 12 (𝑁 = 1 → (𝑁 = 1 ∨ 𝑁 = 2))
1312a1d 25 . . . . . . . . . . 11 (𝑁 = 1 → (𝑁 < 3 → (𝑁 = 1 ∨ 𝑁 = 2)))
1413a1d 25 . . . . . . . . . 10 (𝑁 = 1 → (𝑁 ∈ ℕ → (𝑁 < 3 → (𝑁 = 1 ∨ 𝑁 = 2))))
15 eluz2b3 11706 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1))
16 eluz2 11637 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁))
17 2a1 28 . . . . . . . . . . . . . . . . 17 (𝑁 = 2 → ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → (𝑁 < 3 → 𝑁 = 2)))
18 zre 11325 . . . . . . . . . . . . . . . . . . . 20 (2 ∈ ℤ → 2 ∈ ℝ)
19 zre 11325 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
20 id 22 . . . . . . . . . . . . . . . . . . . 20 (2 ≤ 𝑁 → 2 ≤ 𝑁)
21 leltne 10071 . . . . . . . . . . . . . . . . . . . 20 ((2 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 2 ≤ 𝑁) → (2 < 𝑁𝑁 ≠ 2))
2218, 19, 20, 21syl3an 1365 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → (2 < 𝑁𝑁 ≠ 2))
23 2z 11353 . . . . . . . . . . . . . . . . . . . . . . . . . 26 2 ∈ ℤ
2423a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑁 ∈ ℤ ∧ 𝑁 < 3) ∧ 2 < 𝑁) → 2 ∈ ℤ)
25 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑁 ∈ ℤ ∧ 𝑁 < 3) ∧ 2 < 𝑁) → 2 < 𝑁)
26 df-3 11024 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3 = (2 + 1)
2726a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℤ → 3 = (2 + 1))
2827breq2d 4625 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℤ → (𝑁 < 3 ↔ 𝑁 < (2 + 1)))
2928biimpa 501 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑁 ∈ ℤ ∧ 𝑁 < 3) → 𝑁 < (2 + 1))
3029adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑁 ∈ ℤ ∧ 𝑁 < 3) ∧ 2 < 𝑁) → 𝑁 < (2 + 1))
31 btwnnz 11397 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((2 ∈ ℤ ∧ 2 < 𝑁𝑁 < (2 + 1)) → ¬ 𝑁 ∈ ℤ)
3224, 25, 30, 31syl3anc 1323 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑁 ∈ ℤ ∧ 𝑁 < 3) ∧ 2 < 𝑁) → ¬ 𝑁 ∈ ℤ)
3332pm2.21d 118 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ ℤ ∧ 𝑁 < 3) ∧ 2 < 𝑁) → (𝑁 ∈ ℤ → 𝑁 = 2))
3433exp31 629 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℤ → (𝑁 < 3 → (2 < 𝑁 → (𝑁 ∈ ℤ → 𝑁 = 2))))
3534com24 95 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℤ → (𝑁 ∈ ℤ → (2 < 𝑁 → (𝑁 < 3 → 𝑁 = 2))))
3635pm2.43i 52 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℤ → (2 < 𝑁 → (𝑁 < 3 → 𝑁 = 2)))
37363ad2ant2 1081 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → (2 < 𝑁 → (𝑁 < 3 → 𝑁 = 2)))
3822, 37sylbird 250 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → (𝑁 ≠ 2 → (𝑁 < 3 → 𝑁 = 2)))
3938com12 32 . . . . . . . . . . . . . . . . 17 (𝑁 ≠ 2 → ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → (𝑁 < 3 → 𝑁 = 2)))
4017, 39pm2.61ine 2873 . . . . . . . . . . . . . . . 16 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → (𝑁 < 3 → 𝑁 = 2))
4116, 40sylbi 207 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → (𝑁 < 3 → 𝑁 = 2))
4241imp 445 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘2) ∧ 𝑁 < 3) → 𝑁 = 2)
4342olcd 408 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑁 < 3) → (𝑁 = 1 ∨ 𝑁 = 2))
4443ex 450 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → (𝑁 < 3 → (𝑁 = 1 ∨ 𝑁 = 2)))
4515, 44sylbir 225 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑁 ≠ 1) → (𝑁 < 3 → (𝑁 = 1 ∨ 𝑁 = 2)))
4645expcom 451 . . . . . . . . . 10 (𝑁 ≠ 1 → (𝑁 ∈ ℕ → (𝑁 < 3 → (𝑁 = 1 ∨ 𝑁 = 2))))
4714, 46pm2.61ine 2873 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 < 3 → (𝑁 = 1 ∨ 𝑁 = 2)))
4811, 47sylbir 225 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁) → (𝑁 < 3 → (𝑁 = 1 ∨ 𝑁 = 2)))
49483adant3 1079 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (𝑁 < 3 → (𝑁 = 1 ∨ 𝑁 = 2)))
5010, 49sylbid 230 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (¬ 𝑁 = 3 → (𝑁 = 1 ∨ 𝑁 = 2)))
5150impcom 446 . . . . 5 ((¬ 𝑁 = 3 ∧ (𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3)) → (𝑁 = 1 ∨ 𝑁 = 2))
5251orcd 407 . . . 4 ((¬ 𝑁 = 3 ∧ (𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3)) → ((𝑁 = 1 ∨ 𝑁 = 2) ∨ 𝑁 = 3))
53 df-3or 1037 . . . 4 ((𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3) ↔ ((𝑁 = 1 ∨ 𝑁 = 2) ∨ 𝑁 = 3))
5452, 53sylibr 224 . . 3 ((¬ 𝑁 = 3 ∧ (𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3)) → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3))
5554ex 450 . 2 𝑁 = 3 → ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3)))
562, 55pm2.61i 176 1 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3o 1035  w3a 1036   = wceq 1480  wcel 1987  wne 2790   class class class wbr 4613  cfv 5847  (class class class)co 6604  cr 9879  1c1 9881   + caddc 9883   < clt 10018  cle 10019  cn 10964  2c2 11014  3c3 11015  0cn0 11236  cz 11321  cuz 11631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632
This theorem is referenced by:  hash1to3  13212
  Copyright terms: Public domain W3C validator