MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0disj Structured version   Visualization version   GIF version

Theorem nn0disj 13022
Description: The first 𝑁 + 1 elements of the set of nonnegative integers are distinct from any later members. (Contributed by AV, 8-Nov-2019.)
Assertion
Ref Expression
nn0disj ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) = ∅

Proof of Theorem nn0disj
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elinel2 4172 . . . . . 6 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → 𝑘 ∈ (ℤ‘(𝑁 + 1)))
2 eluzle 12255 . . . . . 6 (𝑘 ∈ (ℤ‘(𝑁 + 1)) → (𝑁 + 1) ≤ 𝑘)
31, 2syl 17 . . . . 5 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → (𝑁 + 1) ≤ 𝑘)
4 eluzel2 12247 . . . . . . 7 (𝑘 ∈ (ℤ‘(𝑁 + 1)) → (𝑁 + 1) ∈ ℤ)
51, 4syl 17 . . . . . 6 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → (𝑁 + 1) ∈ ℤ)
6 eluzelz 12252 . . . . . . 7 (𝑘 ∈ (ℤ‘(𝑁 + 1)) → 𝑘 ∈ ℤ)
71, 6syl 17 . . . . . 6 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → 𝑘 ∈ ℤ)
8 zlem1lt 12033 . . . . . 6 (((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑁 + 1) ≤ 𝑘 ↔ ((𝑁 + 1) − 1) < 𝑘))
95, 7, 8syl2anc 586 . . . . 5 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → ((𝑁 + 1) ≤ 𝑘 ↔ ((𝑁 + 1) − 1) < 𝑘))
103, 9mpbid 234 . . . 4 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → ((𝑁 + 1) − 1) < 𝑘)
11 elinel1 4171 . . . . . 6 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → 𝑘 ∈ (0...𝑁))
12 elfzle2 12910 . . . . . 6 (𝑘 ∈ (0...𝑁) → 𝑘𝑁)
1311, 12syl 17 . . . . 5 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → 𝑘𝑁)
147zred 12086 . . . . . . 7 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → 𝑘 ∈ ℝ)
15 elin 4168 . . . . . . . . 9 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) ↔ (𝑘 ∈ (0...𝑁) ∧ 𝑘 ∈ (ℤ‘(𝑁 + 1))))
16 elfzel2 12905 . . . . . . . . . 10 (𝑘 ∈ (0...𝑁) → 𝑁 ∈ ℤ)
1716adantr 483 . . . . . . . . 9 ((𝑘 ∈ (0...𝑁) ∧ 𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑁 ∈ ℤ)
1815, 17sylbi 219 . . . . . . . 8 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → 𝑁 ∈ ℤ)
1918zred 12086 . . . . . . 7 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → 𝑁 ∈ ℝ)
2014, 19lenltd 10785 . . . . . 6 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → (𝑘𝑁 ↔ ¬ 𝑁 < 𝑘))
2118zcnd 12087 . . . . . . . . . 10 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → 𝑁 ∈ ℂ)
22 pncan1 11063 . . . . . . . . . 10 (𝑁 ∈ ℂ → ((𝑁 + 1) − 1) = 𝑁)
2321, 22syl 17 . . . . . . . . 9 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → ((𝑁 + 1) − 1) = 𝑁)
2423eqcomd 2827 . . . . . . . 8 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → 𝑁 = ((𝑁 + 1) − 1))
2524breq1d 5075 . . . . . . 7 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → (𝑁 < 𝑘 ↔ ((𝑁 + 1) − 1) < 𝑘))
2625notbid 320 . . . . . 6 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → (¬ 𝑁 < 𝑘 ↔ ¬ ((𝑁 + 1) − 1) < 𝑘))
2720, 26bitrd 281 . . . . 5 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → (𝑘𝑁 ↔ ¬ ((𝑁 + 1) − 1) < 𝑘))
2813, 27mpbid 234 . . . 4 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → ¬ ((𝑁 + 1) − 1) < 𝑘)
2910, 28pm2.21dd 197 . . 3 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → 𝑘 ∈ ∅)
3029ssriv 3970 . 2 ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) ⊆ ∅
31 ss0 4351 . 2 (((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) ⊆ ∅ → ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) = ∅)
3230, 31ax-mp 5 1 ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 208  wa 398   = wceq 1533  wcel 2110  cin 3934  wss 3935  c0 4290   class class class wbr 5065  cfv 6354  (class class class)co 7155  cc 10534  0cc0 10536  1c1 10537   + caddc 10539   < clt 10674  cle 10675  cmin 10869  cz 11980  cuz 12242  ...cfz 12891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-n0 11897  df-z 11981  df-uz 12243  df-fz 12892
This theorem is referenced by:  chfacfscmulgsum  21467  chfacfpmmulgsum  21471  nnuzdisj  41621
  Copyright terms: Public domain W3C validator