Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0ennn Structured version   Visualization version   GIF version

Theorem nn0ennn 12718
 Description: The nonnegative integers are equinumerous to the positive integers. (Contributed by NM, 19-Jul-2004.)
Assertion
Ref Expression
nn0ennn 0 ≈ ℕ

Proof of Theorem nn0ennn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0ex 11242 . 2 0 ∈ V
2 nnex 10970 . 2 ℕ ∈ V
3 nn0p1nn 11276 . 2 (𝑥 ∈ ℕ0 → (𝑥 + 1) ∈ ℕ)
4 nnm1nn0 11278 . 2 (𝑦 ∈ ℕ → (𝑦 − 1) ∈ ℕ0)
5 nncn 10972 . . 3 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
6 nn0cn 11246 . . 3 (𝑥 ∈ ℕ0𝑥 ∈ ℂ)
7 ax-1cn 9938 . . . . . 6 1 ∈ ℂ
8 subadd 10228 . . . . . 6 ((𝑦 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝑦 − 1) = 𝑥 ↔ (1 + 𝑥) = 𝑦))
97, 8mp3an2 1409 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝑦 − 1) = 𝑥 ↔ (1 + 𝑥) = 𝑦))
10 eqcom 2628 . . . . 5 (𝑥 = (𝑦 − 1) ↔ (𝑦 − 1) = 𝑥)
11 eqcom 2628 . . . . 5 (𝑦 = (1 + 𝑥) ↔ (1 + 𝑥) = 𝑦)
129, 10, 113bitr4g 303 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑥 = (𝑦 − 1) ↔ 𝑦 = (1 + 𝑥)))
13 addcom 10166 . . . . . . 7 ((1 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (1 + 𝑥) = (𝑥 + 1))
147, 13mpan 705 . . . . . 6 (𝑥 ∈ ℂ → (1 + 𝑥) = (𝑥 + 1))
1514eqeq2d 2631 . . . . 5 (𝑥 ∈ ℂ → (𝑦 = (1 + 𝑥) ↔ 𝑦 = (𝑥 + 1)))
1615adantl 482 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑦 = (1 + 𝑥) ↔ 𝑦 = (𝑥 + 1)))
1712, 16bitrd 268 . . 3 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑥 = (𝑦 − 1) ↔ 𝑦 = (𝑥 + 1)))
185, 6, 17syl2anr 495 . 2 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ) → (𝑥 = (𝑦 − 1) ↔ 𝑦 = (𝑥 + 1)))
191, 2, 3, 4, 18en3i 7938 1 0 ≈ ℕ
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 196   ∧ wa 384   = wceq 1480   ∈ wcel 1987   class class class wbr 4613  (class class class)co 6604   ≈ cen 7896  ℂcc 9878  1c1 9881   + caddc 9883   − cmin 10210  ℕcn 10964  ℕ0cn0 11236 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-ltxr 10023  df-sub 10212  df-nn 10965  df-n0 11237 This theorem is referenced by:  nnenom  12719  bitsf1  15092  dyadmbl  23274  aannenlem3  23989  poimirlem32  33073  heiborlem3  33244  heibor  33252
 Copyright terms: Public domain W3C validator