MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0ge2m1nn Structured version   Visualization version   GIF version

Theorem nn0ge2m1nn 11209
Description: If a nonnegative integer is greater than or equal to two, the integer decreased by 1 is a positive integer. (Contributed by Alexander van der Vekens, 1-Aug-2018.) (Revised by AV, 4-Jan-2020.)
Assertion
Ref Expression
nn0ge2m1nn ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ ℕ)

Proof of Theorem nn0ge2m1nn
StepHypRef Expression
1 simpl 471 . . . 4 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → 𝑁 ∈ ℕ0)
2 1red 9911 . . . . . . 7 (𝑁 ∈ ℕ0 → 1 ∈ ℝ)
3 2re 10939 . . . . . . . 8 2 ∈ ℝ
43a1i 11 . . . . . . 7 (𝑁 ∈ ℕ0 → 2 ∈ ℝ)
5 nn0re 11150 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
62, 4, 53jca 1234 . . . . . 6 (𝑁 ∈ ℕ0 → (1 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑁 ∈ ℝ))
76adantr 479 . . . . 5 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (1 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑁 ∈ ℝ))
8 simpr 475 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → 2 ≤ 𝑁)
9 1lt2 11043 . . . . . 6 1 < 2
108, 9jctil 557 . . . . 5 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (1 < 2 ∧ 2 ≤ 𝑁))
11 ltleletr 9981 . . . . 5 ((1 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((1 < 2 ∧ 2 ≤ 𝑁) → 1 ≤ 𝑁))
127, 10, 11sylc 62 . . . 4 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → 1 ≤ 𝑁)
13 elnnnn0c 11187 . . . 4 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁))
141, 12, 13sylanbrc 694 . . 3 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → 𝑁 ∈ ℕ)
15 nn1m1nn 10889 . . 3 (𝑁 ∈ ℕ → (𝑁 = 1 ∨ (𝑁 − 1) ∈ ℕ))
1614, 15syl 17 . 2 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 = 1 ∨ (𝑁 − 1) ∈ ℕ))
17 breq2 4581 . . . . 5 (𝑁 = 1 → (2 ≤ 𝑁 ↔ 2 ≤ 1))
18 1re 9895 . . . . . . . 8 1 ∈ ℝ
1918, 3ltnlei 10009 . . . . . . 7 (1 < 2 ↔ ¬ 2 ≤ 1)
20 pm2.21 118 . . . . . . 7 (¬ 2 ≤ 1 → (2 ≤ 1 → (𝑁 − 1) ∈ ℕ))
2119, 20sylbi 205 . . . . . 6 (1 < 2 → (2 ≤ 1 → (𝑁 − 1) ∈ ℕ))
229, 21ax-mp 5 . . . . 5 (2 ≤ 1 → (𝑁 − 1) ∈ ℕ)
2317, 22syl6bi 241 . . . 4 (𝑁 = 1 → (2 ≤ 𝑁 → (𝑁 − 1) ∈ ℕ))
2423adantld 481 . . 3 (𝑁 = 1 → ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ ℕ))
25 ax-1 6 . . 3 ((𝑁 − 1) ∈ ℕ → ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ ℕ))
2624, 25jaoi 392 . 2 ((𝑁 = 1 ∨ (𝑁 − 1) ∈ ℕ) → ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ ℕ))
2716, 26mpcom 37 1 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 381  wa 382  w3a 1030   = wceq 1474  wcel 1976   class class class wbr 4577  (class class class)co 6526  cr 9791  1c1 9793   < clt 9930  cle 9931  cmin 10117  cn 10869  2c2 10919  0cn0 11141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4711  ax-pow 4763  ax-pr 4827  ax-un 6824  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4938  df-id 4942  df-po 4948  df-so 4949  df-fr 4986  df-we 4988  df-xp 5033  df-rel 5034  df-cnv 5035  df-co 5036  df-dm 5037  df-rn 5038  df-res 5039  df-ima 5040  df-pred 5582  df-ord 5628  df-on 5629  df-lim 5630  df-suc 5631  df-iota 5753  df-fun 5791  df-fn 5792  df-f 5793  df-f1 5794  df-fo 5795  df-f1o 5796  df-fv 5797  df-riota 6488  df-ov 6529  df-oprab 6530  df-mpt2 6531  df-om 6935  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-er 7606  df-en 7819  df-dom 7820  df-sdom 7821  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-nn 10870  df-2 10928  df-n0 11142
This theorem is referenced by:  nn0ge2m1nn0  11210  wwlkm1edg  26056  clwlkisclwwlklem2fv2  26104  fmtnoprmfac1  39799  wwlksm1edg  41059  clwlkclwwlklem2fv2  41186  clwlkclwwlk  41192  logbpw2m1  42140  blenpw2m1  42152  nnolog2flm1  42163
  Copyright terms: Public domain W3C validator