Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nn0prpw Structured version   Visualization version   GIF version

Theorem nn0prpw 33568
Description: Two nonnegative integers are the same if and only if they are divisible by the same prime powers. (Contributed by Jeff Hankins, 29-Sep-2013.)
Assertion
Ref Expression
nn0prpw ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 = 𝐵 ↔ ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵)))
Distinct variable groups:   𝑛,𝑝,𝐴   𝐵,𝑛,𝑝

Proof of Theorem nn0prpw
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 breq2 5061 . . . 4 (𝐴 = 𝐵 → ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵))
21a1d 25 . . 3 (𝐴 = 𝐵 → ((𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ) → ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵)))
32ralrimivv 3187 . 2 (𝐴 = 𝐵 → ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵))
4 elnn0 11887 . . 3 (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0))
5 elnn0 11887 . . . . . . 7 (𝐵 ∈ ℕ0 ↔ (𝐵 ∈ ℕ ∨ 𝐵 = 0))
6 nnre 11633 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
7 nnre 11633 . . . . . . . . . . . . . 14 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
8 lttri2 10711 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐵 < 𝐴)))
96, 7, 8syl2an 595 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐵 < 𝐴)))
109ancoms 459 . . . . . . . . . . . 12 ((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐵 < 𝐴)))
11 nn0prpwlem 33567 . . . . . . . . . . . . . 14 (𝐵 ∈ ℕ → ∀𝑘 ∈ ℕ (𝑘 < 𝐵 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝑘 ↔ (𝑝𝑛) ∥ 𝐵)))
12 breq1 5060 . . . . . . . . . . . . . . . 16 (𝑘 = 𝐴 → (𝑘 < 𝐵𝐴 < 𝐵))
13 breq2 5061 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝐴 → ((𝑝𝑛) ∥ 𝑘 ↔ (𝑝𝑛) ∥ 𝐴))
1413bibi1d 345 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝐴 → (((𝑝𝑛) ∥ 𝑘 ↔ (𝑝𝑛) ∥ 𝐵) ↔ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵)))
1514notbid 319 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝐴 → (¬ ((𝑝𝑛) ∥ 𝑘 ↔ (𝑝𝑛) ∥ 𝐵) ↔ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵)))
16152rexbidv 3297 . . . . . . . . . . . . . . . 16 (𝑘 = 𝐴 → (∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝑘 ↔ (𝑝𝑛) ∥ 𝐵) ↔ ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵)))
1712, 16imbi12d 346 . . . . . . . . . . . . . . 15 (𝑘 = 𝐴 → ((𝑘 < 𝐵 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝑘 ↔ (𝑝𝑛) ∥ 𝐵)) ↔ (𝐴 < 𝐵 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵))))
1817rspcv 3615 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ → (∀𝑘 ∈ ℕ (𝑘 < 𝐵 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝑘 ↔ (𝑝𝑛) ∥ 𝐵)) → (𝐴 < 𝐵 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵))))
1911, 18mpan9 507 . . . . . . . . . . . . 13 ((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (𝐴 < 𝐵 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵)))
20 breq1 5060 . . . . . . . . . . . . . . . 16 (𝑘 = 𝐵 → (𝑘 < 𝐴𝐵 < 𝐴))
21 breq2 5061 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝐵 → ((𝑝𝑛) ∥ 𝑘 ↔ (𝑝𝑛) ∥ 𝐵))
2221bibi1d 345 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝐵 → (((𝑝𝑛) ∥ 𝑘 ↔ (𝑝𝑛) ∥ 𝐴) ↔ ((𝑝𝑛) ∥ 𝐵 ↔ (𝑝𝑛) ∥ 𝐴)))
23 bicom 223 . . . . . . . . . . . . . . . . . . 19 (((𝑝𝑛) ∥ 𝐵 ↔ (𝑝𝑛) ∥ 𝐴) ↔ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵))
2422, 23syl6bb 288 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝐵 → (((𝑝𝑛) ∥ 𝑘 ↔ (𝑝𝑛) ∥ 𝐴) ↔ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵)))
2524notbid 319 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝐵 → (¬ ((𝑝𝑛) ∥ 𝑘 ↔ (𝑝𝑛) ∥ 𝐴) ↔ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵)))
26252rexbidv 3297 . . . . . . . . . . . . . . . 16 (𝑘 = 𝐵 → (∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝑘 ↔ (𝑝𝑛) ∥ 𝐴) ↔ ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵)))
2720, 26imbi12d 346 . . . . . . . . . . . . . . 15 (𝑘 = 𝐵 → ((𝑘 < 𝐴 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝑘 ↔ (𝑝𝑛) ∥ 𝐴)) ↔ (𝐵 < 𝐴 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵))))
2827rspcv 3615 . . . . . . . . . . . . . 14 (𝐵 ∈ ℕ → (∀𝑘 ∈ ℕ (𝑘 < 𝐴 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝑘 ↔ (𝑝𝑛) ∥ 𝐴)) → (𝐵 < 𝐴 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵))))
29 nn0prpwlem 33567 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ → ∀𝑘 ∈ ℕ (𝑘 < 𝐴 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝑘 ↔ (𝑝𝑛) ∥ 𝐴)))
3028, 29impel 506 . . . . . . . . . . . . 13 ((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (𝐵 < 𝐴 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵)))
3119, 30jaod 853 . . . . . . . . . . . 12 ((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ) → ((𝐴 < 𝐵𝐵 < 𝐴) → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵)))
3210, 31sylbid 241 . . . . . . . . . . 11 ((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (𝐴𝐵 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵)))
33 df-ne 3014 . . . . . . . . . . 11 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
34 rexnal2 3255 . . . . . . . . . . 11 (∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵) ↔ ¬ ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵))
3532, 33, 343imtr3g 296 . . . . . . . . . 10 ((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (¬ 𝐴 = 𝐵 → ¬ ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵)))
3635con4d 115 . . . . . . . . 9 ((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵) → 𝐴 = 𝐵))
3736ex 413 . . . . . . . 8 (𝐵 ∈ ℕ → (𝐴 ∈ ℕ → (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵) → 𝐴 = 𝐵)))
38 prmunb 16238 . . . . . . . . . . . 12 (𝐴 ∈ ℕ → ∃𝑝 ∈ ℙ 𝐴 < 𝑝)
39 1nn 11637 . . . . . . . . . . . . . . 15 1 ∈ ℕ
40 prmz 16007 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
41 1nn0 11901 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℕ0
42 zexpcl 13432 . . . . . . . . . . . . . . . . . . . 20 ((𝑝 ∈ ℤ ∧ 1 ∈ ℕ0) → (𝑝↑1) ∈ ℤ)
4340, 41, 42sylancl 586 . . . . . . . . . . . . . . . . . . 19 (𝑝 ∈ ℙ → (𝑝↑1) ∈ ℤ)
44 dvds0 15613 . . . . . . . . . . . . . . . . . . 19 ((𝑝↑1) ∈ ℤ → (𝑝↑1) ∥ 0)
4543, 44syl 17 . . . . . . . . . . . . . . . . . 18 (𝑝 ∈ ℙ → (𝑝↑1) ∥ 0)
46453ad2ant2 1126 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐴 < 𝑝) → (𝑝↑1) ∥ 0)
47 dvdsle 15648 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑝↑1) ∈ ℤ ∧ 𝐴 ∈ ℕ) → ((𝑝↑1) ∥ 𝐴 → (𝑝↑1) ≤ 𝐴))
4843, 47sylan 580 . . . . . . . . . . . . . . . . . . . . 21 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ) → ((𝑝↑1) ∥ 𝐴 → (𝑝↑1) ≤ 𝐴))
49 prmnn 16006 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
50 nnre 11633 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑝 ∈ ℕ → 𝑝 ∈ ℝ)
5149, 50syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑝 ∈ ℙ → 𝑝 ∈ ℝ)
52 reexpcl 13434 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑝 ∈ ℝ ∧ 1 ∈ ℕ0) → (𝑝↑1) ∈ ℝ)
5351, 41, 52sylancl 586 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑝 ∈ ℙ → (𝑝↑1) ∈ ℝ)
54 lenlt 10707 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑝↑1) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝑝↑1) ≤ 𝐴 ↔ ¬ 𝐴 < (𝑝↑1)))
5553, 6, 54syl2an 595 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ) → ((𝑝↑1) ≤ 𝐴 ↔ ¬ 𝐴 < (𝑝↑1)))
5649nncnd 11642 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑝 ∈ ℙ → 𝑝 ∈ ℂ)
5756exp1d 13493 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑝 ∈ ℙ → (𝑝↑1) = 𝑝)
5857adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝑝↑1) = 𝑝)
5958breq2d 5069 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝐴 < (𝑝↑1) ↔ 𝐴 < 𝑝))
6059notbid 319 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (¬ 𝐴 < (𝑝↑1) ↔ ¬ 𝐴 < 𝑝))
6155, 60bitrd 280 . . . . . . . . . . . . . . . . . . . . 21 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ) → ((𝑝↑1) ≤ 𝐴 ↔ ¬ 𝐴 < 𝑝))
6248, 61sylibd 240 . . . . . . . . . . . . . . . . . . . 20 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ) → ((𝑝↑1) ∥ 𝐴 → ¬ 𝐴 < 𝑝))
6362ancoms 459 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((𝑝↑1) ∥ 𝐴 → ¬ 𝐴 < 𝑝))
6463con2d 136 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝐴 < 𝑝 → ¬ (𝑝↑1) ∥ 𝐴))
65643impia 1109 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐴 < 𝑝) → ¬ (𝑝↑1) ∥ 𝐴)
6646, 65jcn 338 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐴 < 𝑝) → ¬ ((𝑝↑1) ∥ 0 → (𝑝↑1) ∥ 𝐴))
67 biimpr 221 . . . . . . . . . . . . . . . 16 (((𝑝↑1) ∥ 𝐴 ↔ (𝑝↑1) ∥ 0) → ((𝑝↑1) ∥ 0 → (𝑝↑1) ∥ 𝐴))
6866, 67nsyl 142 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐴 < 𝑝) → ¬ ((𝑝↑1) ∥ 𝐴 ↔ (𝑝↑1) ∥ 0))
69 oveq2 7153 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 1 → (𝑝𝑛) = (𝑝↑1))
7069breq1d 5067 . . . . . . . . . . . . . . . . . 18 (𝑛 = 1 → ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝↑1) ∥ 𝐴))
7169breq1d 5067 . . . . . . . . . . . . . . . . . 18 (𝑛 = 1 → ((𝑝𝑛) ∥ 0 ↔ (𝑝↑1) ∥ 0))
7270, 71bibi12d 347 . . . . . . . . . . . . . . . . 17 (𝑛 = 1 → (((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 0) ↔ ((𝑝↑1) ∥ 𝐴 ↔ (𝑝↑1) ∥ 0)))
7372notbid 319 . . . . . . . . . . . . . . . 16 (𝑛 = 1 → (¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 0) ↔ ¬ ((𝑝↑1) ∥ 𝐴 ↔ (𝑝↑1) ∥ 0)))
7473rspcev 3620 . . . . . . . . . . . . . . 15 ((1 ∈ ℕ ∧ ¬ ((𝑝↑1) ∥ 𝐴 ↔ (𝑝↑1) ∥ 0)) → ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 0))
7539, 68, 74sylancr 587 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐴 < 𝑝) → ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 0))
76753expia 1113 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝐴 < 𝑝 → ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 0)))
7776reximdva 3271 . . . . . . . . . . . 12 (𝐴 ∈ ℕ → (∃𝑝 ∈ ℙ 𝐴 < 𝑝 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 0)))
7838, 77mpd 15 . . . . . . . . . . 11 (𝐴 ∈ ℕ → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 0))
79 rexnal2 3255 . . . . . . . . . . 11 (∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 0) ↔ ¬ ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 0))
8078, 79sylib 219 . . . . . . . . . 10 (𝐴 ∈ ℕ → ¬ ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 0))
8180pm2.21d 121 . . . . . . . . 9 (𝐴 ∈ ℕ → (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 0) → 𝐴 = 0))
82 breq2 5061 . . . . . . . . . . . 12 (𝐵 = 0 → ((𝑝𝑛) ∥ 𝐵 ↔ (𝑝𝑛) ∥ 0))
8382bibi2d 344 . . . . . . . . . . 11 (𝐵 = 0 → (((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵) ↔ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 0)))
84832ralbidv 3196 . . . . . . . . . 10 (𝐵 = 0 → (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵) ↔ ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 0)))
85 eqeq2 2830 . . . . . . . . . 10 (𝐵 = 0 → (𝐴 = 𝐵𝐴 = 0))
8684, 85imbi12d 346 . . . . . . . . 9 (𝐵 = 0 → ((∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵) → 𝐴 = 𝐵) ↔ (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 0) → 𝐴 = 0)))
8781, 86syl5ibr 247 . . . . . . . 8 (𝐵 = 0 → (𝐴 ∈ ℕ → (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵) → 𝐴 = 𝐵)))
8837, 87jaoi 851 . . . . . . 7 ((𝐵 ∈ ℕ ∨ 𝐵 = 0) → (𝐴 ∈ ℕ → (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵) → 𝐴 = 𝐵)))
895, 88sylbi 218 . . . . . 6 (𝐵 ∈ ℕ0 → (𝐴 ∈ ℕ → (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵) → 𝐴 = 𝐵)))
9089com12 32 . . . . 5 (𝐴 ∈ ℕ → (𝐵 ∈ ℕ0 → (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵) → 𝐴 = 𝐵)))
91 orcom 864 . . . . . . . . . 10 ((𝐵 ∈ ℕ ∨ 𝐵 = 0) ↔ (𝐵 = 0 ∨ 𝐵 ∈ ℕ))
92 df-or 842 . . . . . . . . . 10 ((𝐵 = 0 ∨ 𝐵 ∈ ℕ) ↔ (¬ 𝐵 = 0 → 𝐵 ∈ ℕ))
935, 91, 923bitri 298 . . . . . . . . 9 (𝐵 ∈ ℕ0 ↔ (¬ 𝐵 = 0 → 𝐵 ∈ ℕ))
94 prmunb 16238 . . . . . . . . . . . 12 (𝐵 ∈ ℕ → ∃𝑝 ∈ ℙ 𝐵 < 𝑝)
95453ad2ant2 1126 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐵 < 𝑝) → (𝑝↑1) ∥ 0)
96 dvdsle 15648 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑝↑1) ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝑝↑1) ∥ 𝐵 → (𝑝↑1) ≤ 𝐵))
9743, 96sylan 580 . . . . . . . . . . . . . . . . . . . . 21 ((𝑝 ∈ ℙ ∧ 𝐵 ∈ ℕ) → ((𝑝↑1) ∥ 𝐵 → (𝑝↑1) ≤ 𝐵))
98 lenlt 10707 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑝↑1) ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝑝↑1) ≤ 𝐵 ↔ ¬ 𝐵 < (𝑝↑1)))
9953, 7, 98syl2an 595 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑝 ∈ ℙ ∧ 𝐵 ∈ ℕ) → ((𝑝↑1) ≤ 𝐵 ↔ ¬ 𝐵 < (𝑝↑1)))
10057adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑝 ∈ ℙ ∧ 𝐵 ∈ ℕ) → (𝑝↑1) = 𝑝)
101100breq2d 5069 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑝 ∈ ℙ ∧ 𝐵 ∈ ℕ) → (𝐵 < (𝑝↑1) ↔ 𝐵 < 𝑝))
102101notbid 319 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑝 ∈ ℙ ∧ 𝐵 ∈ ℕ) → (¬ 𝐵 < (𝑝↑1) ↔ ¬ 𝐵 < 𝑝))
10399, 102bitrd 280 . . . . . . . . . . . . . . . . . . . . 21 ((𝑝 ∈ ℙ ∧ 𝐵 ∈ ℕ) → ((𝑝↑1) ≤ 𝐵 ↔ ¬ 𝐵 < 𝑝))
10497, 103sylibd 240 . . . . . . . . . . . . . . . . . . . 20 ((𝑝 ∈ ℙ ∧ 𝐵 ∈ ℕ) → ((𝑝↑1) ∥ 𝐵 → ¬ 𝐵 < 𝑝))
105104ancoms 459 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((𝑝↑1) ∥ 𝐵 → ¬ 𝐵 < 𝑝))
106105con2d 136 . . . . . . . . . . . . . . . . . 18 ((𝐵 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝐵 < 𝑝 → ¬ (𝑝↑1) ∥ 𝐵))
1071063impia 1109 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐵 < 𝑝) → ¬ (𝑝↑1) ∥ 𝐵)
10895, 107jcn 338 . . . . . . . . . . . . . . . 16 ((𝐵 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐵 < 𝑝) → ¬ ((𝑝↑1) ∥ 0 → (𝑝↑1) ∥ 𝐵))
109 biimp 216 . . . . . . . . . . . . . . . 16 (((𝑝↑1) ∥ 0 ↔ (𝑝↑1) ∥ 𝐵) → ((𝑝↑1) ∥ 0 → (𝑝↑1) ∥ 𝐵))
110108, 109nsyl 142 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐵 < 𝑝) → ¬ ((𝑝↑1) ∥ 0 ↔ (𝑝↑1) ∥ 𝐵))
11169breq1d 5067 . . . . . . . . . . . . . . . . . 18 (𝑛 = 1 → ((𝑝𝑛) ∥ 𝐵 ↔ (𝑝↑1) ∥ 𝐵))
11271, 111bibi12d 347 . . . . . . . . . . . . . . . . 17 (𝑛 = 1 → (((𝑝𝑛) ∥ 0 ↔ (𝑝𝑛) ∥ 𝐵) ↔ ((𝑝↑1) ∥ 0 ↔ (𝑝↑1) ∥ 𝐵)))
113112notbid 319 . . . . . . . . . . . . . . . 16 (𝑛 = 1 → (¬ ((𝑝𝑛) ∥ 0 ↔ (𝑝𝑛) ∥ 𝐵) ↔ ¬ ((𝑝↑1) ∥ 0 ↔ (𝑝↑1) ∥ 𝐵)))
114113rspcev 3620 . . . . . . . . . . . . . . 15 ((1 ∈ ℕ ∧ ¬ ((𝑝↑1) ∥ 0 ↔ (𝑝↑1) ∥ 𝐵)) → ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 0 ↔ (𝑝𝑛) ∥ 𝐵))
11539, 110, 114sylancr 587 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐵 < 𝑝) → ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 0 ↔ (𝑝𝑛) ∥ 𝐵))
1161153expia 1113 . . . . . . . . . . . . 13 ((𝐵 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝐵 < 𝑝 → ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 0 ↔ (𝑝𝑛) ∥ 𝐵)))
117116reximdva 3271 . . . . . . . . . . . 12 (𝐵 ∈ ℕ → (∃𝑝 ∈ ℙ 𝐵 < 𝑝 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 0 ↔ (𝑝𝑛) ∥ 𝐵)))
11894, 117mpd 15 . . . . . . . . . . 11 (𝐵 ∈ ℕ → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 0 ↔ (𝑝𝑛) ∥ 𝐵))
119 rexnal2 3255 . . . . . . . . . . 11 (∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 0 ↔ (𝑝𝑛) ∥ 𝐵) ↔ ¬ ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 0 ↔ (𝑝𝑛) ∥ 𝐵))
120118, 119sylib 219 . . . . . . . . . 10 (𝐵 ∈ ℕ → ¬ ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 0 ↔ (𝑝𝑛) ∥ 𝐵))
121120imim2i 16 . . . . . . . . 9 ((¬ 𝐵 = 0 → 𝐵 ∈ ℕ) → (¬ 𝐵 = 0 → ¬ ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 0 ↔ (𝑝𝑛) ∥ 𝐵)))
12293, 121sylbi 218 . . . . . . . 8 (𝐵 ∈ ℕ0 → (¬ 𝐵 = 0 → ¬ ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 0 ↔ (𝑝𝑛) ∥ 𝐵)))
123122con4d 115 . . . . . . 7 (𝐵 ∈ ℕ0 → (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 0 ↔ (𝑝𝑛) ∥ 𝐵) → 𝐵 = 0))
124 eqcom 2825 . . . . . . 7 (𝐵 = 0 ↔ 0 = 𝐵)
125123, 124syl6ib 252 . . . . . 6 (𝐵 ∈ ℕ0 → (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 0 ↔ (𝑝𝑛) ∥ 𝐵) → 0 = 𝐵))
126 breq2 5061 . . . . . . . . 9 (𝐴 = 0 → ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 0))
127126bibi1d 345 . . . . . . . 8 (𝐴 = 0 → (((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵) ↔ ((𝑝𝑛) ∥ 0 ↔ (𝑝𝑛) ∥ 𝐵)))
1281272ralbidv 3196 . . . . . . 7 (𝐴 = 0 → (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵) ↔ ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 0 ↔ (𝑝𝑛) ∥ 𝐵)))
129 eqeq1 2822 . . . . . . 7 (𝐴 = 0 → (𝐴 = 𝐵 ↔ 0 = 𝐵))
130128, 129imbi12d 346 . . . . . 6 (𝐴 = 0 → ((∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵) → 𝐴 = 𝐵) ↔ (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 0 ↔ (𝑝𝑛) ∥ 𝐵) → 0 = 𝐵)))
131125, 130syl5ibr 247 . . . . 5 (𝐴 = 0 → (𝐵 ∈ ℕ0 → (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵) → 𝐴 = 𝐵)))
13290, 131jaoi 851 . . . 4 ((𝐴 ∈ ℕ ∨ 𝐴 = 0) → (𝐵 ∈ ℕ0 → (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵) → 𝐴 = 𝐵)))
133132imp 407 . . 3 (((𝐴 ∈ ℕ ∨ 𝐴 = 0) ∧ 𝐵 ∈ ℕ0) → (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵) → 𝐴 = 𝐵))
1344, 133sylanb 581 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵) → 𝐴 = 𝐵))
1353, 134impbid2 227 1 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 = 𝐵 ↔ ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 841  w3a 1079   = wceq 1528  wcel 2105  wne 3013  wral 3135  wrex 3136   class class class wbr 5057  (class class class)co 7145  cr 10524  0cc0 10525  1c1 10526   < clt 10663  cle 10664  cn 11626  0cn0 11885  cz 11969  cexp 13417  cdvds 15595  cprime 16003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-sup 8894  df-inf 8895  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12881  df-fl 13150  df-mod 13226  df-seq 13358  df-exp 13418  df-fac 13622  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-dvds 15596  df-gcd 15832  df-prm 16004
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator