![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nn0sqeq1 | Structured version Visualization version GIF version |
Description: Integer square one. (Contributed by Thierry Arnoux, 2-Feb-2020.) |
Ref | Expression |
---|---|
nn0sqeq1 | ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁↑2) = 1) → 𝑁 = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0re 11414 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
2 | 1red 10168 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 1 ∈ ℝ) | |
3 | 1, 2 | lttri2d 10289 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ≠ 1 ↔ (𝑁 < 1 ∨ 1 < 𝑁))) |
4 | nn0lt10b 11552 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → (𝑁 < 1 ↔ 𝑁 = 0)) | |
5 | 4 | biimpa 502 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 < 1) → 𝑁 = 0) |
6 | 5 | sq0id 13072 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 < 1) → (𝑁↑2) = 0) |
7 | 0ne1 11201 | . . . . . . . 8 ⊢ 0 ≠ 1 | |
8 | 7 | a1i 11 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 < 1) → 0 ≠ 1) |
9 | 6, 8 | eqnetrd 2963 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 < 1) → (𝑁↑2) ≠ 1) |
10 | 1red 10168 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ0 ∧ 1 < 𝑁) → 1 ∈ ℝ) | |
11 | sq1 13073 | . . . . . . . 8 ⊢ (1↑2) = 1 | |
12 | 0le1 10664 | . . . . . . . . . . 11 ⊢ 0 ≤ 1 | |
13 | 12 | a1i 11 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 1) |
14 | nn0ge0 11431 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) | |
15 | 2, 1, 13, 14 | lt2sqd 13158 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → (1 < 𝑁 ↔ (1↑2) < (𝑁↑2))) |
16 | 15 | biimpa 502 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ0 ∧ 1 < 𝑁) → (1↑2) < (𝑁↑2)) |
17 | 11, 16 | syl5eqbrr 4796 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ0 ∧ 1 < 𝑁) → 1 < (𝑁↑2)) |
18 | 10, 17 | gtned 10285 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 1 < 𝑁) → (𝑁↑2) ≠ 1) |
19 | 9, 18 | jaodan 861 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 < 1 ∨ 1 < 𝑁)) → (𝑁↑2) ≠ 1) |
20 | 19 | ex 449 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 < 1 ∨ 1 < 𝑁) → (𝑁↑2) ≠ 1)) |
21 | 3, 20 | sylbid 230 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ≠ 1 → (𝑁↑2) ≠ 1)) |
22 | 21 | necon4d 2920 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((𝑁↑2) = 1 → 𝑁 = 1)) |
23 | 22 | imp 444 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁↑2) = 1) → 𝑁 = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 382 ∧ wa 383 = wceq 1596 ∈ wcel 2103 ≠ wne 2896 class class class wbr 4760 (class class class)co 6765 0cc0 10049 1c1 10050 < clt 10187 ≤ cle 10188 2c2 11183 ℕ0cn0 11405 ↑cexp 12975 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 ax-cnex 10105 ax-resscn 10106 ax-1cn 10107 ax-icn 10108 ax-addcl 10109 ax-addrcl 10110 ax-mulcl 10111 ax-mulrcl 10112 ax-mulcom 10113 ax-addass 10114 ax-mulass 10115 ax-distr 10116 ax-i2m1 10117 ax-1ne0 10118 ax-1rid 10119 ax-rnegex 10120 ax-rrecex 10121 ax-cnre 10122 ax-pre-lttri 10123 ax-pre-lttrn 10124 ax-pre-ltadd 10125 ax-pre-mulgt0 10126 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-nel 3000 df-ral 3019 df-rex 3020 df-reu 3021 df-rmo 3022 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-pss 3696 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-tp 4290 df-op 4292 df-uni 4545 df-iun 4630 df-br 4761 df-opab 4821 df-mpt 4838 df-tr 4861 df-id 5128 df-eprel 5133 df-po 5139 df-so 5140 df-fr 5177 df-we 5179 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-pred 5793 df-ord 5839 df-on 5840 df-lim 5841 df-suc 5842 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-riota 6726 df-ov 6768 df-oprab 6769 df-mpt2 6770 df-om 7183 df-2nd 7286 df-wrecs 7527 df-recs 7588 df-rdg 7626 df-er 7862 df-en 8073 df-dom 8074 df-sdom 8075 df-pnf 10189 df-mnf 10190 df-xr 10191 df-ltxr 10192 df-le 10193 df-sub 10381 df-neg 10382 df-div 10798 df-nn 11134 df-2 11192 df-n0 11406 df-z 11491 df-uz 11801 df-seq 12917 df-exp 12976 |
This theorem is referenced by: 2sqcoprm 29877 |
Copyright terms: Public domain | W3C validator |