MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0sscn Structured version   Visualization version   GIF version

Theorem nn0sscn 11257
Description: Nonnegative integers are a subset of the complex numbers.) (Contributed by NM, 9-May-2004.)
Assertion
Ref Expression
nn0sscn 0 ⊆ ℂ

Proof of Theorem nn0sscn
StepHypRef Expression
1 nn0ssre 11256 . 2 0 ⊆ ℝ
2 ax-resscn 9953 . 2 ℝ ⊆ ℂ
31, 2sstri 3597 1 0 ⊆ ℂ
Colors of variables: wff setvar class
Syntax hints:  wss 3560  cc 9894  cr 9895  0cn0 11252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-i2m1 9964  ax-1ne0 9965  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-reu 2915  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-ov 6618  df-om 7028  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-nn 10981  df-n0 11253
This theorem is referenced by:  nn0cn  11262  nn0expcl  12830  fsumnn0cl  14416  fprodnn0cl  14631  nn0risefaccl  14697  divalglem8  15066  psrridm  19344  nn0srg  19756  tdeglem3  23757  eulerpartlems  30245  deg1mhm  37305
  Copyright terms: Public domain W3C validator