MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0sub Structured version   Visualization version   GIF version

Theorem nn0sub 11192
Description: Subtraction of nonnegative integers. (Contributed by NM, 9-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.)
Assertion
Ref Expression
nn0sub ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀𝑁 ↔ (𝑁𝑀) ∈ ℕ0))

Proof of Theorem nn0sub
StepHypRef Expression
1 nn0re 11150 . . . 4 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
2 nn0re 11150 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
3 leloe 9975 . . . 4 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀𝑁 ↔ (𝑀 < 𝑁𝑀 = 𝑁)))
41, 2, 3syl2an 492 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀𝑁 ↔ (𝑀 < 𝑁𝑀 = 𝑁)))
5 elnn0 11143 . . . . . 6 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
6 elnn0 11143 . . . . . . . 8 (𝑀 ∈ ℕ0 ↔ (𝑀 ∈ ℕ ∨ 𝑀 = 0))
7 nnsub 10908 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ))
87ex 448 . . . . . . . . 9 (𝑀 ∈ ℕ → (𝑁 ∈ ℕ → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ)))
9 nngt0 10898 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 0 < 𝑁)
10 nncn 10877 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
1110subid1d 10232 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑁 − 0) = 𝑁)
12 id 22 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ)
1311, 12eqeltrd 2687 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝑁 − 0) ∈ ℕ)
149, 132thd 253 . . . . . . . . . 10 (𝑁 ∈ ℕ → (0 < 𝑁 ↔ (𝑁 − 0) ∈ ℕ))
15 breq1 4580 . . . . . . . . . . 11 (𝑀 = 0 → (𝑀 < 𝑁 ↔ 0 < 𝑁))
16 oveq2 6534 . . . . . . . . . . . 12 (𝑀 = 0 → (𝑁𝑀) = (𝑁 − 0))
1716eleq1d 2671 . . . . . . . . . . 11 (𝑀 = 0 → ((𝑁𝑀) ∈ ℕ ↔ (𝑁 − 0) ∈ ℕ))
1815, 17bibi12d 333 . . . . . . . . . 10 (𝑀 = 0 → ((𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ) ↔ (0 < 𝑁 ↔ (𝑁 − 0) ∈ ℕ)))
1914, 18syl5ibr 234 . . . . . . . . 9 (𝑀 = 0 → (𝑁 ∈ ℕ → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ)))
208, 19jaoi 392 . . . . . . . 8 ((𝑀 ∈ ℕ ∨ 𝑀 = 0) → (𝑁 ∈ ℕ → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ)))
216, 20sylbi 205 . . . . . . 7 (𝑀 ∈ ℕ0 → (𝑁 ∈ ℕ → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ)))
22 nn0nlt0 11168 . . . . . . . . . 10 (𝑀 ∈ ℕ0 → ¬ 𝑀 < 0)
2322pm2.21d 116 . . . . . . . . 9 (𝑀 ∈ ℕ0 → (𝑀 < 0 → (0 − 𝑀) ∈ ℕ))
24 nngt0 10898 . . . . . . . . . 10 ((0 − 𝑀) ∈ ℕ → 0 < (0 − 𝑀))
25 0re 9896 . . . . . . . . . . 11 0 ∈ ℝ
26 posdif 10372 . . . . . . . . . . 11 ((𝑀 ∈ ℝ ∧ 0 ∈ ℝ) → (𝑀 < 0 ↔ 0 < (0 − 𝑀)))
271, 25, 26sylancl 692 . . . . . . . . . 10 (𝑀 ∈ ℕ0 → (𝑀 < 0 ↔ 0 < (0 − 𝑀)))
2824, 27syl5ibr 234 . . . . . . . . 9 (𝑀 ∈ ℕ0 → ((0 − 𝑀) ∈ ℕ → 𝑀 < 0))
2923, 28impbid 200 . . . . . . . 8 (𝑀 ∈ ℕ0 → (𝑀 < 0 ↔ (0 − 𝑀) ∈ ℕ))
30 breq2 4581 . . . . . . . . 9 (𝑁 = 0 → (𝑀 < 𝑁𝑀 < 0))
31 oveq1 6533 . . . . . . . . . 10 (𝑁 = 0 → (𝑁𝑀) = (0 − 𝑀))
3231eleq1d 2671 . . . . . . . . 9 (𝑁 = 0 → ((𝑁𝑀) ∈ ℕ ↔ (0 − 𝑀) ∈ ℕ))
3330, 32bibi12d 333 . . . . . . . 8 (𝑁 = 0 → ((𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ) ↔ (𝑀 < 0 ↔ (0 − 𝑀) ∈ ℕ)))
3429, 33syl5ibrcom 235 . . . . . . 7 (𝑀 ∈ ℕ0 → (𝑁 = 0 → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ)))
3521, 34jaod 393 . . . . . 6 (𝑀 ∈ ℕ0 → ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ)))
365, 35syl5bi 230 . . . . 5 (𝑀 ∈ ℕ0 → (𝑁 ∈ ℕ0 → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ)))
3736imp 443 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ))
38 nn0cn 11151 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
39 nn0cn 11151 . . . . . 6 (𝑀 ∈ ℕ0𝑀 ∈ ℂ)
40 subeq0 10158 . . . . . 6 ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ) → ((𝑁𝑀) = 0 ↔ 𝑁 = 𝑀))
4138, 39, 40syl2anr 493 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑁𝑀) = 0 ↔ 𝑁 = 𝑀))
42 eqcom 2616 . . . . 5 (𝑁 = 𝑀𝑀 = 𝑁)
4341, 42syl6rbb 275 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 = 𝑁 ↔ (𝑁𝑀) = 0))
4437, 43orbi12d 741 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑀 < 𝑁𝑀 = 𝑁) ↔ ((𝑁𝑀) ∈ ℕ ∨ (𝑁𝑀) = 0)))
454, 44bitrd 266 . 2 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀𝑁 ↔ ((𝑁𝑀) ∈ ℕ ∨ (𝑁𝑀) = 0)))
46 elnn0 11143 . 2 ((𝑁𝑀) ∈ ℕ0 ↔ ((𝑁𝑀) ∈ ℕ ∨ (𝑁𝑀) = 0))
4745, 46syl6bbr 276 1 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀𝑁 ↔ (𝑁𝑀) ∈ ℕ0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wo 381  wa 382   = wceq 1474  wcel 1976   class class class wbr 4577  (class class class)co 6526  cc 9790  cr 9791  0cc0 9792   < clt 9930  cle 9931  cmin 10117  cn 10869  0cn0 11141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4711  ax-pow 4763  ax-pr 4827  ax-un 6824  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4938  df-id 4942  df-po 4948  df-so 4949  df-fr 4986  df-we 4988  df-xp 5033  df-rel 5034  df-cnv 5035  df-co 5036  df-dm 5037  df-rn 5038  df-res 5039  df-ima 5040  df-pred 5582  df-ord 5628  df-on 5629  df-lim 5630  df-suc 5631  df-iota 5753  df-fun 5791  df-fn 5792  df-f 5793  df-f1 5794  df-fo 5795  df-f1o 5796  df-fv 5797  df-riota 6488  df-ov 6529  df-oprab 6530  df-mpt2 6531  df-om 6935  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-er 7606  df-en 7819  df-dom 7820  df-sdom 7821  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-nn 10870  df-n0 11142
This theorem is referenced by:  ltsubnn0  11193  nn0n0n1ge2  11207  elz2  11229  nn0sub2  11273  fz0fzdiffz0  12274  ubmelfzo  12357  repswcshw  13357  swrd2lsw  13491  2swrd2eqwrdeq  13492  psrbagcon  19140  coe1tmmul2  19415  aaliou3lem6  23851  basellem5  24555  omndmul3  28837  jm2.27c  36375  binomcxplemnn0  37353  dvnxpaek  38615  fmtnoprmfac2lem1  39800  subsubelfzo0  40165  crctcsh1wlkn0lem5  40998  eucrctshift  41392  digexp  42180
  Copyright terms: Public domain W3C validator