MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0suc Structured version   Visualization version   GIF version

Theorem nn0suc 7256
Description: A natural number is either 0 or a successor. (Contributed by NM, 27-May-1998.)
Assertion
Ref Expression
nn0suc (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))
Distinct variable group:   𝑥,𝐴

Proof of Theorem nn0suc
StepHypRef Expression
1 df-ne 2933 . . . 4 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
2 nnsuc 7248 . . . 4 ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ ω 𝐴 = suc 𝑥)
31, 2sylan2br 494 . . 3 ((𝐴 ∈ ω ∧ ¬ 𝐴 = ∅) → ∃𝑥 ∈ ω 𝐴 = suc 𝑥)
43ex 449 . 2 (𝐴 ∈ ω → (¬ 𝐴 = ∅ → ∃𝑥 ∈ ω 𝐴 = suc 𝑥))
54orrd 392 1 (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382   = wceq 1632  wcel 2139  wne 2932  wrex 3051  c0 4058  suc csuc 5886  ωcom 7231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pr 5055  ax-un 7115
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-tr 4905  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-om 7232
This theorem is referenced by:  nnawordex  7888  nneneq  8310  php  8311  cantnfvalf  8737  cantnflt  8744  hsmexlem9  9459  winainflem  9727  bnj517  31283  trpredlem1  32053  trpred0  32062  trpredrec  32064
  Copyright terms: Public domain W3C validator