![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nn0sumltlt | Structured version Visualization version GIF version |
Description: If the sum of two nonnegative integers is less than a third integer, then one of the summands is already less than this third integer. (Contributed by AV, 19-Oct-2019.) |
Ref | Expression |
---|---|
nn0sumltlt | ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → ((𝑎 + 𝑏) < 𝑐 → 𝑏 < 𝑐)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0re 11339 | . . 3 ⊢ (𝑎 ∈ ℕ0 → 𝑎 ∈ ℝ) | |
2 | nn0re 11339 | . . 3 ⊢ (𝑏 ∈ ℕ0 → 𝑏 ∈ ℝ) | |
3 | nn0re 11339 | . . 3 ⊢ (𝑐 ∈ ℕ0 → 𝑐 ∈ ℝ) | |
4 | ltaddsub2 10541 | . . 3 ⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ) → ((𝑎 + 𝑏) < 𝑐 ↔ 𝑏 < (𝑐 − 𝑎))) | |
5 | 1, 2, 3, 4 | syl3an 1408 | . 2 ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → ((𝑎 + 𝑏) < 𝑐 ↔ 𝑏 < (𝑐 − 𝑎))) |
6 | nn0ge0 11356 | . . . . 5 ⊢ (𝑎 ∈ ℕ0 → 0 ≤ 𝑎) | |
7 | 6 | 3ad2ant1 1102 | . . . 4 ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → 0 ≤ 𝑎) |
8 | 1, 3 | anim12ci 590 | . . . . . 6 ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → (𝑐 ∈ ℝ ∧ 𝑎 ∈ ℝ)) |
9 | 8 | 3adant2 1100 | . . . . 5 ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → (𝑐 ∈ ℝ ∧ 𝑎 ∈ ℝ)) |
10 | subge02 10582 | . . . . . 6 ⊢ ((𝑐 ∈ ℝ ∧ 𝑎 ∈ ℝ) → (0 ≤ 𝑎 ↔ (𝑐 − 𝑎) ≤ 𝑐)) | |
11 | 10 | bicomd 213 | . . . . 5 ⊢ ((𝑐 ∈ ℝ ∧ 𝑎 ∈ ℝ) → ((𝑐 − 𝑎) ≤ 𝑐 ↔ 0 ≤ 𝑎)) |
12 | 9, 11 | syl 17 | . . . 4 ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → ((𝑐 − 𝑎) ≤ 𝑐 ↔ 0 ≤ 𝑎)) |
13 | 7, 12 | mpbird 247 | . . 3 ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → (𝑐 − 𝑎) ≤ 𝑐) |
14 | 2 | 3ad2ant2 1103 | . . . 4 ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → 𝑏 ∈ ℝ) |
15 | nn0resubcl 41642 | . . . . . 6 ⊢ ((𝑐 ∈ ℕ0 ∧ 𝑎 ∈ ℕ0) → (𝑐 − 𝑎) ∈ ℝ) | |
16 | 15 | ancoms 468 | . . . . 5 ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → (𝑐 − 𝑎) ∈ ℝ) |
17 | 16 | 3adant2 1100 | . . . 4 ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → (𝑐 − 𝑎) ∈ ℝ) |
18 | 3 | 3ad2ant3 1104 | . . . 4 ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → 𝑐 ∈ ℝ) |
19 | ltletr 10167 | . . . 4 ⊢ ((𝑏 ∈ ℝ ∧ (𝑐 − 𝑎) ∈ ℝ ∧ 𝑐 ∈ ℝ) → ((𝑏 < (𝑐 − 𝑎) ∧ (𝑐 − 𝑎) ≤ 𝑐) → 𝑏 < 𝑐)) | |
20 | 14, 17, 18, 19 | syl3anc 1366 | . . 3 ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → ((𝑏 < (𝑐 − 𝑎) ∧ (𝑐 − 𝑎) ≤ 𝑐) → 𝑏 < 𝑐)) |
21 | 13, 20 | mpan2d 710 | . 2 ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → (𝑏 < (𝑐 − 𝑎) → 𝑏 < 𝑐)) |
22 | 5, 21 | sylbid 230 | 1 ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → ((𝑎 + 𝑏) < 𝑐 → 𝑏 < 𝑐)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1054 ∈ wcel 2030 class class class wbr 4685 (class class class)co 6690 ℝcr 9973 0cc0 9974 + caddc 9977 < clt 10112 ≤ cle 10113 − cmin 10304 ℕ0cn0 11330 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-n0 11331 |
This theorem is referenced by: ply1mulgsumlem1 42499 |
Copyright terms: Public domain | W3C validator |