Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nn0sumshdiglem2 Structured version   Visualization version   GIF version

Theorem nn0sumshdiglem2 41682
Description: Lemma 2 for nn0sumshdig 41683. (Contributed by AV, 7-Jun-2020.)
Assertion
Ref Expression
nn0sumshdiglem2 (𝐿 ∈ ℕ → ∀𝑎 ∈ ℕ0 ((#b𝑎) = 𝐿𝑎 = Σ𝑘 ∈ (0..^𝐿)((𝑘(digit‘2)𝑎) · (2↑𝑘))))
Distinct variable group:   𝑘,𝑎,𝐿

Proof of Theorem nn0sumshdiglem2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq2 2637 . . . 4 (𝑥 = 1 → ((#b𝑎) = 𝑥 ↔ (#b𝑎) = 1))
2 oveq2 6613 . . . . . . 7 (𝑥 = 1 → (0..^𝑥) = (0..^1))
3 fzo01 12488 . . . . . . 7 (0..^1) = {0}
42, 3syl6eq 2676 . . . . . 6 (𝑥 = 1 → (0..^𝑥) = {0})
54sumeq1d 14360 . . . . 5 (𝑥 = 1 → Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘)) = Σ𝑘 ∈ {0} ((𝑘(digit‘2)𝑎) · (2↑𝑘)))
65eqeq2d 2636 . . . 4 (𝑥 = 1 → (𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘)) ↔ 𝑎 = Σ𝑘 ∈ {0} ((𝑘(digit‘2)𝑎) · (2↑𝑘))))
71, 6imbi12d 334 . . 3 (𝑥 = 1 → (((#b𝑎) = 𝑥𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ ((#b𝑎) = 1 → 𝑎 = Σ𝑘 ∈ {0} ((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
87ralbidv 2985 . 2 (𝑥 = 1 → (∀𝑎 ∈ ℕ0 ((#b𝑎) = 𝑥𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ ∀𝑎 ∈ ℕ0 ((#b𝑎) = 1 → 𝑎 = Σ𝑘 ∈ {0} ((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
9 eqeq2 2637 . . . 4 (𝑥 = 𝑦 → ((#b𝑎) = 𝑥 ↔ (#b𝑎) = 𝑦))
10 oveq2 6613 . . . . . 6 (𝑥 = 𝑦 → (0..^𝑥) = (0..^𝑦))
1110sumeq1d 14360 . . . . 5 (𝑥 = 𝑦 → Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘)) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘)))
1211eqeq2d 2636 . . . 4 (𝑥 = 𝑦 → (𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘)) ↔ 𝑎 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘))))
139, 12imbi12d 334 . . 3 (𝑥 = 𝑦 → (((#b𝑎) = 𝑥𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ ((#b𝑎) = 𝑦𝑎 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
1413ralbidv 2985 . 2 (𝑥 = 𝑦 → (∀𝑎 ∈ ℕ0 ((#b𝑎) = 𝑥𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ ∀𝑎 ∈ ℕ0 ((#b𝑎) = 𝑦𝑎 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
15 eqeq2 2637 . . . 4 (𝑥 = (𝑦 + 1) → ((#b𝑎) = 𝑥 ↔ (#b𝑎) = (𝑦 + 1)))
16 oveq2 6613 . . . . . 6 (𝑥 = (𝑦 + 1) → (0..^𝑥) = (0..^(𝑦 + 1)))
1716sumeq1d 14360 . . . . 5 (𝑥 = (𝑦 + 1) → Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘)) = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))
1817eqeq2d 2636 . . . 4 (𝑥 = (𝑦 + 1) → (𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘)) ↔ 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))
1915, 18imbi12d 334 . . 3 (𝑥 = (𝑦 + 1) → (((#b𝑎) = 𝑥𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
2019ralbidv 2985 . 2 (𝑥 = (𝑦 + 1) → (∀𝑎 ∈ ℕ0 ((#b𝑎) = 𝑥𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ ∀𝑎 ∈ ℕ0 ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
21 eqeq2 2637 . . . 4 (𝑥 = 𝐿 → ((#b𝑎) = 𝑥 ↔ (#b𝑎) = 𝐿))
22 oveq2 6613 . . . . . 6 (𝑥 = 𝐿 → (0..^𝑥) = (0..^𝐿))
2322sumeq1d 14360 . . . . 5 (𝑥 = 𝐿 → Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘)) = Σ𝑘 ∈ (0..^𝐿)((𝑘(digit‘2)𝑎) · (2↑𝑘)))
2423eqeq2d 2636 . . . 4 (𝑥 = 𝐿 → (𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘)) ↔ 𝑎 = Σ𝑘 ∈ (0..^𝐿)((𝑘(digit‘2)𝑎) · (2↑𝑘))))
2521, 24imbi12d 334 . . 3 (𝑥 = 𝐿 → (((#b𝑎) = 𝑥𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ ((#b𝑎) = 𝐿𝑎 = Σ𝑘 ∈ (0..^𝐿)((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
2625ralbidv 2985 . 2 (𝑥 = 𝐿 → (∀𝑎 ∈ ℕ0 ((#b𝑎) = 𝑥𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ ∀𝑎 ∈ ℕ0 ((#b𝑎) = 𝐿𝑎 = Σ𝑘 ∈ (0..^𝐿)((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
27 0cnd 9978 . . . . . . . 8 (𝑎 ∈ ℕ0 → 0 ∈ ℂ)
28 2nn 11130 . . . . . . . . . . . 12 2 ∈ ℕ
2928a1i 11 . . . . . . . . . . 11 (𝑎 ∈ ℕ0 → 2 ∈ ℕ)
30 0zd 11334 . . . . . . . . . . 11 (𝑎 ∈ ℕ0 → 0 ∈ ℤ)
31 nn0rp0 12218 . . . . . . . . . . 11 (𝑎 ∈ ℕ0𝑎 ∈ (0[,)+∞))
32 digvalnn0 41659 . . . . . . . . . . 11 ((2 ∈ ℕ ∧ 0 ∈ ℤ ∧ 𝑎 ∈ (0[,)+∞)) → (0(digit‘2)𝑎) ∈ ℕ0)
3329, 30, 31, 32syl3anc 1323 . . . . . . . . . 10 (𝑎 ∈ ℕ0 → (0(digit‘2)𝑎) ∈ ℕ0)
3433nn0cnd 11298 . . . . . . . . 9 (𝑎 ∈ ℕ0 → (0(digit‘2)𝑎) ∈ ℂ)
35 1cnd 10001 . . . . . . . . 9 (𝑎 ∈ ℕ0 → 1 ∈ ℂ)
3634, 35mulcld 10005 . . . . . . . 8 (𝑎 ∈ ℕ0 → ((0(digit‘2)𝑎) · 1) ∈ ℂ)
3727, 36jca 554 . . . . . . 7 (𝑎 ∈ ℕ0 → (0 ∈ ℂ ∧ ((0(digit‘2)𝑎) · 1) ∈ ℂ))
3837adantr 481 . . . . . 6 ((𝑎 ∈ ℕ0 ∧ (#b𝑎) = 1) → (0 ∈ ℂ ∧ ((0(digit‘2)𝑎) · 1) ∈ ℂ))
39 oveq1 6612 . . . . . . . 8 (𝑘 = 0 → (𝑘(digit‘2)𝑎) = (0(digit‘2)𝑎))
40 oveq2 6613 . . . . . . . . 9 (𝑘 = 0 → (2↑𝑘) = (2↑0))
41 2cn 11036 . . . . . . . . . 10 2 ∈ ℂ
42 exp0 12801 . . . . . . . . . 10 (2 ∈ ℂ → (2↑0) = 1)
4341, 42ax-mp 5 . . . . . . . . 9 (2↑0) = 1
4440, 43syl6eq 2676 . . . . . . . 8 (𝑘 = 0 → (2↑𝑘) = 1)
4539, 44oveq12d 6623 . . . . . . 7 (𝑘 = 0 → ((𝑘(digit‘2)𝑎) · (2↑𝑘)) = ((0(digit‘2)𝑎) · 1))
4645sumsn 14400 . . . . . 6 ((0 ∈ ℂ ∧ ((0(digit‘2)𝑎) · 1) ∈ ℂ) → Σ𝑘 ∈ {0} ((𝑘(digit‘2)𝑎) · (2↑𝑘)) = ((0(digit‘2)𝑎) · 1))
4738, 46syl 17 . . . . 5 ((𝑎 ∈ ℕ0 ∧ (#b𝑎) = 1) → Σ𝑘 ∈ {0} ((𝑘(digit‘2)𝑎) · (2↑𝑘)) = ((0(digit‘2)𝑎) · 1))
4834adantr 481 . . . . . 6 ((𝑎 ∈ ℕ0 ∧ (#b𝑎) = 1) → (0(digit‘2)𝑎) ∈ ℂ)
4948mulid1d 10002 . . . . 5 ((𝑎 ∈ ℕ0 ∧ (#b𝑎) = 1) → ((0(digit‘2)𝑎) · 1) = (0(digit‘2)𝑎))
50 blen1b 41648 . . . . . . . 8 (𝑎 ∈ ℕ0 → ((#b𝑎) = 1 ↔ (𝑎 = 0 ∨ 𝑎 = 1)))
5150biimpa 501 . . . . . . 7 ((𝑎 ∈ ℕ0 ∧ (#b𝑎) = 1) → (𝑎 = 0 ∨ 𝑎 = 1))
52 vex 3194 . . . . . . . 8 𝑎 ∈ V
5352elpr 4174 . . . . . . 7 (𝑎 ∈ {0, 1} ↔ (𝑎 = 0 ∨ 𝑎 = 1))
5451, 53sylibr 224 . . . . . 6 ((𝑎 ∈ ℕ0 ∧ (#b𝑎) = 1) → 𝑎 ∈ {0, 1})
55 0dig2pr01 41670 . . . . . 6 (𝑎 ∈ {0, 1} → (0(digit‘2)𝑎) = 𝑎)
5654, 55syl 17 . . . . 5 ((𝑎 ∈ ℕ0 ∧ (#b𝑎) = 1) → (0(digit‘2)𝑎) = 𝑎)
5747, 49, 563eqtrrd 2665 . . . 4 ((𝑎 ∈ ℕ0 ∧ (#b𝑎) = 1) → 𝑎 = Σ𝑘 ∈ {0} ((𝑘(digit‘2)𝑎) · (2↑𝑘)))
5857ex 450 . . 3 (𝑎 ∈ ℕ0 → ((#b𝑎) = 1 → 𝑎 = Σ𝑘 ∈ {0} ((𝑘(digit‘2)𝑎) · (2↑𝑘))))
5958rgen 2922 . 2 𝑎 ∈ ℕ0 ((#b𝑎) = 1 → 𝑎 = Σ𝑘 ∈ {0} ((𝑘(digit‘2)𝑎) · (2↑𝑘)))
60 nn0sumshdiglem1 41681 . 2 (𝑦 ∈ ℕ → (∀𝑎 ∈ ℕ0 ((#b𝑎) = 𝑦𝑎 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘))) → ∀𝑎 ∈ ℕ0 ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
618, 14, 20, 26, 59, 60nnind 10983 1 (𝐿 ∈ ℕ → ∀𝑎 ∈ ℕ0 ((#b𝑎) = 𝐿𝑎 = Σ𝑘 ∈ (0..^𝐿)((𝑘(digit‘2)𝑎) · (2↑𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384   = wceq 1480  wcel 1992  wral 2912  {csn 4153  {cpr 4155  cfv 5850  (class class class)co 6605  cc 9879  0cc0 9881  1c1 9882   + caddc 9884   · cmul 9886  +∞cpnf 10016  cn 10965  2c2 11015  0cn0 11237  cz 11322  [,)cico 12116  ..^cfzo 12403  cexp 12797  Σcsu 14345  #bcblen 41629  digitcdig 41655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-inf2 8483  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-pre-sup 9959  ax-addf 9960  ax-mulf 9961
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-isom 5859  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-of 6851  df-om 7014  df-1st 7116  df-2nd 7117  df-supp 7242  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-2o 7507  df-oadd 7510  df-er 7688  df-map 7805  df-pm 7806  df-ixp 7854  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-fsupp 8221  df-fi 8262  df-sup 8293  df-inf 8294  df-oi 8360  df-card 8710  df-cda 8935  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-nn 10966  df-2 11024  df-3 11025  df-4 11026  df-5 11027  df-6 11028  df-7 11029  df-8 11030  df-9 11031  df-n0 11238  df-z 11323  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ioo 12118  df-ioc 12119  df-ico 12120  df-icc 12121  df-fz 12266  df-fzo 12404  df-fl 12530  df-mod 12606  df-seq 12739  df-exp 12798  df-fac 12998  df-bc 13027  df-hash 13055  df-shft 13736  df-cj 13768  df-re 13769  df-im 13770  df-sqrt 13904  df-abs 13905  df-limsup 14131  df-clim 14148  df-rlim 14149  df-sum 14346  df-ef 14718  df-sin 14720  df-cos 14721  df-pi 14723  df-dvds 14903  df-struct 15778  df-ndx 15779  df-slot 15780  df-base 15781  df-sets 15782  df-ress 15783  df-plusg 15870  df-mulr 15871  df-starv 15872  df-sca 15873  df-vsca 15874  df-ip 15875  df-tset 15876  df-ple 15877  df-ds 15880  df-unif 15881  df-hom 15882  df-cco 15883  df-rest 15999  df-topn 16000  df-0g 16018  df-gsum 16019  df-topgen 16020  df-pt 16021  df-prds 16024  df-xrs 16078  df-qtop 16083  df-imas 16084  df-xps 16086  df-mre 16162  df-mrc 16163  df-acs 16165  df-mgm 17158  df-sgrp 17200  df-mnd 17211  df-submnd 17252  df-mulg 17457  df-cntz 17666  df-cmn 18111  df-psmet 19652  df-xmet 19653  df-met 19654  df-bl 19655  df-mopn 19656  df-fbas 19657  df-fg 19658  df-cnfld 19661  df-top 20616  df-bases 20617  df-topon 20618  df-topsp 20619  df-cld 20728  df-ntr 20729  df-cls 20730  df-nei 20807  df-lp 20845  df-perf 20846  df-cn 20936  df-cnp 20937  df-haus 21024  df-tx 21270  df-hmeo 21463  df-fil 21555  df-fm 21647  df-flim 21648  df-flf 21649  df-xms 22030  df-ms 22031  df-tms 22032  df-cncf 22584  df-limc 23531  df-dv 23532  df-log 24202  df-cxp 24203  df-logb 24398  df-blen 41630  df-dig 41656
This theorem is referenced by:  nn0sumshdig  41683
  Copyright terms: Public domain W3C validator