Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nn0sumshdiglemA Structured version   Visualization version   GIF version

Theorem nn0sumshdiglemA 44678
Description: Lemma for nn0sumshdig 44682 (induction step, even multiplier). (Contributed by AV, 3-Jun-2020.)
Assertion
Ref Expression
nn0sumshdiglemA (((𝑎 ∈ ℕ ∧ (𝑎 / 2) ∈ ℕ) ∧ 𝑦 ∈ ℕ) → (∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
Distinct variable group:   𝑘,𝑎,𝑥,𝑦

Proof of Theorem nn0sumshdiglemA
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 nnnn0 11903 . . . 4 ((𝑎 / 2) ∈ ℕ → (𝑎 / 2) ∈ ℕ0)
2 blennn0em1 44650 . . . 4 ((𝑎 ∈ ℕ ∧ (𝑎 / 2) ∈ ℕ0) → (#b‘(𝑎 / 2)) = ((#b𝑎) − 1))
31, 2sylan2 594 . . 3 ((𝑎 ∈ ℕ ∧ (𝑎 / 2) ∈ ℕ) → (#b‘(𝑎 / 2)) = ((#b𝑎) − 1))
4 fveqeq2 6678 . . . . . . . . . . 11 (𝑥 = (𝑎 / 2) → ((#b𝑥) = 𝑦 ↔ (#b‘(𝑎 / 2)) = 𝑦))
5 id 22 . . . . . . . . . . . 12 (𝑥 = (𝑎 / 2) → 𝑥 = (𝑎 / 2))
6 oveq2 7163 . . . . . . . . . . . . . . 15 (𝑥 = (𝑎 / 2) → (𝑘(digit‘2)𝑥) = (𝑘(digit‘2)(𝑎 / 2)))
76oveq1d 7170 . . . . . . . . . . . . . 14 (𝑥 = (𝑎 / 2) → ((𝑘(digit‘2)𝑥) · (2↑𝑘)) = ((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘)))
87adantr 483 . . . . . . . . . . . . 13 ((𝑥 = (𝑎 / 2) ∧ 𝑘 ∈ (0..^𝑦)) → ((𝑘(digit‘2)𝑥) · (2↑𝑘)) = ((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘)))
98sumeq2dv 15059 . . . . . . . . . . . 12 (𝑥 = (𝑎 / 2) → Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘)))
105, 9eqeq12d 2837 . . . . . . . . . . 11 (𝑥 = (𝑎 / 2) → (𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)) ↔ (𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘))))
114, 10imbi12d 347 . . . . . . . . . 10 (𝑥 = (𝑎 / 2) → (((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) ↔ ((#b‘(𝑎 / 2)) = 𝑦 → (𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘)))))
1211rspcva 3620 . . . . . . . . 9 (((𝑎 / 2) ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))) → ((#b‘(𝑎 / 2)) = 𝑦 → (𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘))))
13 simpr 487 . . . . . . . . . . . . . . . . 17 ((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) → (#b𝑎) = (𝑦 + 1))
1413oveq1d 7170 . . . . . . . . . . . . . . . 16 ((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) → ((#b𝑎) − 1) = ((𝑦 + 1) − 1))
15 nncn 11645 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
16 pncan1 11063 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℂ → ((𝑦 + 1) − 1) = 𝑦)
1715, 16syl 17 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ → ((𝑦 + 1) − 1) = 𝑦)
1814, 17sylan9eq 2876 . . . . . . . . . . . . . . 15 (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → ((#b𝑎) − 1) = 𝑦)
1918eqeq2d 2832 . . . . . . . . . . . . . 14 (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → ((#b‘(𝑎 / 2)) = ((#b𝑎) − 1) ↔ (#b‘(𝑎 / 2)) = 𝑦))
20 nnz 12003 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
2120adantl 484 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℤ)
22 fzval3 13105 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ ℤ → (0...𝑦) = (0..^(𝑦 + 1)))
2321, 22syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → (0...𝑦) = (0..^(𝑦 + 1)))
2423eqcomd 2827 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → (0..^(𝑦 + 1)) = (0...𝑦))
2524sumeq1d 15057 . . . . . . . . . . . . . . . . . . . 20 (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)) = Σ𝑘 ∈ (0...𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘)))
26 nnnn0 11903 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ ℕ → 𝑦 ∈ ℕ0)
27 elnn0uz 12282 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ ℕ0𝑦 ∈ (ℤ‘0))
2826, 27sylib 220 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ℕ → 𝑦 ∈ (ℤ‘0))
2928adantl 484 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ (ℤ‘0))
30 2nn 11709 . . . . . . . . . . . . . . . . . . . . . . . . 25 2 ∈ ℕ
3130a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑦)) → 2 ∈ ℕ)
32 elfzelz 12907 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 ∈ (0...𝑦) → 𝑘 ∈ ℤ)
3332adantl 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑦)) → 𝑘 ∈ ℤ)
34 nnnn0 11903 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 ∈ ℕ → 𝑎 ∈ ℕ0)
35 nn0rp0 12842 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 ∈ ℕ0𝑎 ∈ (0[,)+∞))
3634, 35syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 ∈ ℕ → 𝑎 ∈ (0[,)+∞))
3736ad4antlr 731 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑦)) → 𝑎 ∈ (0[,)+∞))
38 digvalnn0 44658 . . . . . . . . . . . . . . . . . . . . . . . 24 ((2 ∈ ℕ ∧ 𝑘 ∈ ℤ ∧ 𝑎 ∈ (0[,)+∞)) → (𝑘(digit‘2)𝑎) ∈ ℕ0)
3931, 33, 37, 38syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑦)) → (𝑘(digit‘2)𝑎) ∈ ℕ0)
4039nn0cnd 11956 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑦)) → (𝑘(digit‘2)𝑎) ∈ ℂ)
41 2nn0 11913 . . . . . . . . . . . . . . . . . . . . . . . . . 26 2 ∈ ℕ0
4241a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 ∈ (0...𝑦) → 2 ∈ ℕ0)
43 elfznn0 12999 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 ∈ (0...𝑦) → 𝑘 ∈ ℕ0)
4442, 43nn0expcld 13606 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 ∈ (0...𝑦) → (2↑𝑘) ∈ ℕ0)
4544nn0cnd 11956 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 ∈ (0...𝑦) → (2↑𝑘) ∈ ℂ)
4645adantl 484 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑦)) → (2↑𝑘) ∈ ℂ)
4740, 46mulcld 10660 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑦)) → ((𝑘(digit‘2)𝑎) · (2↑𝑘)) ∈ ℂ)
48 oveq1 7162 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 0 → (𝑘(digit‘2)𝑎) = (0(digit‘2)𝑎))
49 oveq2 7163 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 0 → (2↑𝑘) = (2↑0))
5048, 49oveq12d 7173 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 0 → ((𝑘(digit‘2)𝑎) · (2↑𝑘)) = ((0(digit‘2)𝑎) · (2↑0)))
51 2cn 11711 . . . . . . . . . . . . . . . . . . . . . . . 24 2 ∈ ℂ
52 exp0 13432 . . . . . . . . . . . . . . . . . . . . . . . 24 (2 ∈ ℂ → (2↑0) = 1)
5351, 52ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 (2↑0) = 1
5453oveq2i 7166 . . . . . . . . . . . . . . . . . . . . . 22 ((0(digit‘2)𝑎) · (2↑0)) = ((0(digit‘2)𝑎) · 1)
5550, 54syl6eq 2872 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 0 → ((𝑘(digit‘2)𝑎) · (2↑𝑘)) = ((0(digit‘2)𝑎) · 1))
5629, 47, 55fsum1p 15107 . . . . . . . . . . . . . . . . . . . 20 (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → Σ𝑘 ∈ (0...𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘)) = (((0(digit‘2)𝑎) · 1) + Σ𝑘 ∈ ((0 + 1)...𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘))))
57 0dig2nn0e 44671 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑎 ∈ ℕ0 ∧ (𝑎 / 2) ∈ ℕ0) → (0(digit‘2)𝑎) = 0)
5834, 1, 57syl2anr 598 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) → (0(digit‘2)𝑎) = 0)
5958oveq1d 7170 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) → ((0(digit‘2)𝑎) · 1) = (0 · 1))
60 1re 10640 . . . . . . . . . . . . . . . . . . . . . . . . . 26 1 ∈ ℝ
61 mul02lem2 10816 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (1 ∈ ℝ → (0 · 1) = 0)
6260, 61ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . 25 (0 · 1) = 0
6359, 62syl6eq 2872 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) → ((0(digit‘2)𝑎) · 1) = 0)
6463adantr 483 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) → ((0(digit‘2)𝑎) · 1) = 0)
6564adantr 483 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → ((0(digit‘2)𝑎) · 1) = 0)
66 1z 12011 . . . . . . . . . . . . . . . . . . . . . . . 24 1 ∈ ℤ
6766a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → 1 ∈ ℤ)
68 0p1e1 11758 . . . . . . . . . . . . . . . . . . . . . . . . 25 (0 + 1) = 1
6968, 66eqeltri 2909 . . . . . . . . . . . . . . . . . . . . . . . 24 (0 + 1) ∈ ℤ
7069a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → (0 + 1) ∈ ℤ)
7130a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑘 ∈ ((0 + 1)...𝑦)) → 2 ∈ ℕ)
72 elfzelz 12907 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑘 ∈ ((0 + 1)...𝑦) → 𝑘 ∈ ℤ)
7372adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑘 ∈ ((0 + 1)...𝑦)) → 𝑘 ∈ ℤ)
7436ad4antlr 731 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑘 ∈ ((0 + 1)...𝑦)) → 𝑎 ∈ (0[,)+∞))
7571, 73, 74, 38syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑘 ∈ ((0 + 1)...𝑦)) → (𝑘(digit‘2)𝑎) ∈ ℕ0)
7675nn0cnd 11956 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑘 ∈ ((0 + 1)...𝑦)) → (𝑘(digit‘2)𝑎) ∈ ℂ)
77 2cnd 11714 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑘 ∈ ((0 + 1)...𝑦) → 2 ∈ ℂ)
78 elfznn 12935 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑘 ∈ (1...𝑦) → 𝑘 ∈ ℕ)
7978nnnn0d 11954 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑘 ∈ (1...𝑦) → 𝑘 ∈ ℕ0)
8068oveq1i 7165 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((0 + 1)...𝑦) = (1...𝑦)
8179, 80eleq2s 2931 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑘 ∈ ((0 + 1)...𝑦) → 𝑘 ∈ ℕ0)
8277, 81expcld 13509 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 ∈ ((0 + 1)...𝑦) → (2↑𝑘) ∈ ℂ)
8382adantl 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑘 ∈ ((0 + 1)...𝑦)) → (2↑𝑘) ∈ ℂ)
8476, 83mulcld 10660 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑘 ∈ ((0 + 1)...𝑦)) → ((𝑘(digit‘2)𝑎) · (2↑𝑘)) ∈ ℂ)
85 oveq1 7162 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 = (𝑖 + 1) → (𝑘(digit‘2)𝑎) = ((𝑖 + 1)(digit‘2)𝑎))
86 oveq2 7163 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 = (𝑖 + 1) → (2↑𝑘) = (2↑(𝑖 + 1)))
8785, 86oveq12d 7173 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = (𝑖 + 1) → ((𝑘(digit‘2)𝑎) · (2↑𝑘)) = (((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1))))
8867, 70, 21, 84, 87fsumshftm 15135 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → Σ𝑘 ∈ ((0 + 1)...𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘)) = Σ𝑖 ∈ (((0 + 1) − 1)...(𝑦 − 1))(((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1))))
8965, 88oveq12d 7173 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → (((0(digit‘2)𝑎) · 1) + Σ𝑘 ∈ ((0 + 1)...𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘))) = (0 + Σ𝑖 ∈ (((0 + 1) − 1)...(𝑦 − 1))(((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1)))))
901ad4antr 730 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → (𝑎 / 2) ∈ ℕ0)
9134ad4antlr 731 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → 𝑎 ∈ ℕ0)
92 elfzonn0 13081 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑖 ∈ (0..^𝑦) → 𝑖 ∈ ℕ0)
9392adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → 𝑖 ∈ ℕ0)
94 dignn0ehalf 44676 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑎 / 2) ∈ ℕ0𝑎 ∈ ℕ0𝑖 ∈ ℕ0) → ((𝑖 + 1)(digit‘2)𝑎) = (𝑖(digit‘2)(𝑎 / 2)))
9590, 91, 93, 94syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → ((𝑖 + 1)(digit‘2)𝑎) = (𝑖(digit‘2)(𝑎 / 2)))
96 2cnd 11714 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑖 ∈ (0..^𝑦) → 2 ∈ ℂ)
9796, 92expp1d 13510 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑖 ∈ (0..^𝑦) → (2↑(𝑖 + 1)) = ((2↑𝑖) · 2))
9897adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → (2↑(𝑖 + 1)) = ((2↑𝑖) · 2))
9995, 98oveq12d 7173 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → (((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1))) = ((𝑖(digit‘2)(𝑎 / 2)) · ((2↑𝑖) · 2)))
10030a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → 2 ∈ ℕ)
101 elfzoelz 13037 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑖 ∈ (0..^𝑦) → 𝑖 ∈ ℤ)
102101adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → 𝑖 ∈ ℤ)
103 nn0rp0 12842 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑎 / 2) ∈ ℕ0 → (𝑎 / 2) ∈ (0[,)+∞))
1041, 103syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑎 / 2) ∈ ℕ → (𝑎 / 2) ∈ (0[,)+∞))
105104ad4antr 730 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → (𝑎 / 2) ∈ (0[,)+∞))
106 digvalnn0 44658 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((2 ∈ ℕ ∧ 𝑖 ∈ ℤ ∧ (𝑎 / 2) ∈ (0[,)+∞)) → (𝑖(digit‘2)(𝑎 / 2)) ∈ ℕ0)
107100, 102, 105, 106syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → (𝑖(digit‘2)(𝑎 / 2)) ∈ ℕ0)
108107nn0cnd 11956 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → (𝑖(digit‘2)(𝑎 / 2)) ∈ ℂ)
109 2re 11710 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2 ∈ ℝ
110109a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑖 ∈ (0..^𝑦) → 2 ∈ ℝ)
111110, 92reexpcld 13526 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑖 ∈ (0..^𝑦) → (2↑𝑖) ∈ ℝ)
112111recnd 10668 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑖 ∈ (0..^𝑦) → (2↑𝑖) ∈ ℂ)
113112adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → (2↑𝑖) ∈ ℂ)
114 2cnd 11714 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → 2 ∈ ℂ)
115 mulass 10624 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑖(digit‘2)(𝑎 / 2)) ∈ ℂ ∧ (2↑𝑖) ∈ ℂ ∧ 2 ∈ ℂ) → (((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖)) · 2) = ((𝑖(digit‘2)(𝑎 / 2)) · ((2↑𝑖) · 2)))
116115eqcomd 2827 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑖(digit‘2)(𝑎 / 2)) ∈ ℂ ∧ (2↑𝑖) ∈ ℂ ∧ 2 ∈ ℂ) → ((𝑖(digit‘2)(𝑎 / 2)) · ((2↑𝑖) · 2)) = (((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖)) · 2))
117108, 113, 114, 116syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → ((𝑖(digit‘2)(𝑎 / 2)) · ((2↑𝑖) · 2)) = (((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖)) · 2))
11899, 117eqtrd 2856 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → (((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1))) = (((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖)) · 2))
119118sumeq2dv 15059 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → Σ𝑖 ∈ (0..^𝑦)(((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1))) = Σ𝑖 ∈ (0..^𝑦)(((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖)) · 2))
120 0cn 10632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 0 ∈ ℂ
121 pncan1 11063 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (0 ∈ ℂ → ((0 + 1) − 1) = 0)
122120, 121ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((0 + 1) − 1) = 0
123122a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 ∈ ℕ → ((0 + 1) − 1) = 0)
124123oveq1d 7170 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 ∈ ℕ → (((0 + 1) − 1)...(𝑦 − 1)) = (0...(𝑦 − 1)))
125 fzoval 13038 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 ∈ ℤ → (0..^𝑦) = (0...(𝑦 − 1)))
126125eqcomd 2827 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 ∈ ℤ → (0...(𝑦 − 1)) = (0..^𝑦))
12720, 126syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 ∈ ℕ → (0...(𝑦 − 1)) = (0..^𝑦))
128124, 127eqtrd 2856 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ ℕ → (((0 + 1) − 1)...(𝑦 − 1)) = (0..^𝑦))
129128adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → (((0 + 1) − 1)...(𝑦 − 1)) = (0..^𝑦))
130129sumeq1d 15057 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → Σ𝑖 ∈ (((0 + 1) − 1)...(𝑦 − 1))(((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1))) = Σ𝑖 ∈ (0..^𝑦)(((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1))))
131130oveq2d 7171 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → (0 + Σ𝑖 ∈ (((0 + 1) − 1)...(𝑦 − 1))(((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1)))) = (0 + Σ𝑖 ∈ (0..^𝑦)(((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1)))))
132 fzofi 13341 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (0..^𝑦) ∈ Fin
133132a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → (0..^𝑦) ∈ Fin)
134101peano2zd 12089 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑖 ∈ (0..^𝑦) → (𝑖 + 1) ∈ ℤ)
135134adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → (𝑖 + 1) ∈ ℤ)
13636ad4antlr 731 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → 𝑎 ∈ (0[,)+∞))
137 digvalnn0 44658 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((2 ∈ ℕ ∧ (𝑖 + 1) ∈ ℤ ∧ 𝑎 ∈ (0[,)+∞)) → ((𝑖 + 1)(digit‘2)𝑎) ∈ ℕ0)
138100, 135, 136, 137syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → ((𝑖 + 1)(digit‘2)𝑎) ∈ ℕ0)
139138nn0cnd 11956 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → ((𝑖 + 1)(digit‘2)𝑎) ∈ ℂ)
14041a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑖 ∈ (0..^𝑦) → 2 ∈ ℕ0)
141 peano2nn0 11936 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑖 ∈ ℕ0 → (𝑖 + 1) ∈ ℕ0)
14292, 141syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑖 ∈ (0..^𝑦) → (𝑖 + 1) ∈ ℕ0)
143140, 142nn0expcld 13606 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑖 ∈ (0..^𝑦) → (2↑(𝑖 + 1)) ∈ ℕ0)
144143nn0cnd 11956 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑖 ∈ (0..^𝑦) → (2↑(𝑖 + 1)) ∈ ℂ)
145144adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → (2↑(𝑖 + 1)) ∈ ℂ)
146139, 145mulcld 10660 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → (((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1))) ∈ ℂ)
147133, 146fsumcl 15089 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → Σ𝑖 ∈ (0..^𝑦)(((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1))) ∈ ℂ)
148147addid2d 10840 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → (0 + Σ𝑖 ∈ (0..^𝑦)(((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1)))) = Σ𝑖 ∈ (0..^𝑦)(((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1))))
149131, 148eqtrd 2856 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → (0 + Σ𝑖 ∈ (((0 + 1) − 1)...(𝑦 − 1))(((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1)))) = Σ𝑖 ∈ (0..^𝑦)(((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1))))
150 2cnd 11714 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → 2 ∈ ℂ)
151140, 92nn0expcld 13606 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑖 ∈ (0..^𝑦) → (2↑𝑖) ∈ ℕ0)
152151nn0cnd 11956 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 ∈ (0..^𝑦) → (2↑𝑖) ∈ ℂ)
153152adantl 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → (2↑𝑖) ∈ ℂ)
154108, 153mulcld 10660 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → ((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖)) ∈ ℂ)
155133, 150, 154fsummulc1 15139 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → (Σ𝑖 ∈ (0..^𝑦)((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖)) · 2) = Σ𝑖 ∈ (0..^𝑦)(((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖)) · 2))
156119, 149, 1553eqtr4d 2866 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → (0 + Σ𝑖 ∈ (((0 + 1) − 1)...(𝑦 − 1))(((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1)))) = (Σ𝑖 ∈ (0..^𝑦)((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖)) · 2))
15789, 156eqtrd 2856 . . . . . . . . . . . . . . . . . . . 20 (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → (((0(digit‘2)𝑎) · 1) + Σ𝑘 ∈ ((0 + 1)...𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘))) = (Σ𝑖 ∈ (0..^𝑦)((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖)) · 2))
15825, 56, 1573eqtrd 2860 . . . . . . . . . . . . . . . . . . 19 (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)) = (Σ𝑖 ∈ (0..^𝑦)((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖)) · 2))
159158adantl 484 . . . . . . . . . . . . . . . . . 18 (((𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘)) ∧ ((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ)) → Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)) = (Σ𝑖 ∈ (0..^𝑦)((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖)) · 2))
160 oveq1 7162 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 = 𝑖 → (𝑘(digit‘2)(𝑎 / 2)) = (𝑖(digit‘2)(𝑎 / 2)))
161 oveq2 7163 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 = 𝑖 → (2↑𝑘) = (2↑𝑖))
162160, 161oveq12d 7173 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 = 𝑖 → ((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘)) = ((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖)))
163162cbvsumv 15052 . . . . . . . . . . . . . . . . . . . . . . 23 Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘)) = Σ𝑖 ∈ (0..^𝑦)((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖))
164163a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘)) = Σ𝑖 ∈ (0..^𝑦)((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖)))
165164eqeq2d 2832 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → ((𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘)) ↔ (𝑎 / 2) = Σ𝑖 ∈ (0..^𝑦)((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖))))
166165biimpac 481 . . . . . . . . . . . . . . . . . . . 20 (((𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘)) ∧ ((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ)) → (𝑎 / 2) = Σ𝑖 ∈ (0..^𝑦)((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖)))
167166eqcomd 2827 . . . . . . . . . . . . . . . . . . 19 (((𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘)) ∧ ((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ)) → Σ𝑖 ∈ (0..^𝑦)((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖)) = (𝑎 / 2))
168167oveq1d 7170 . . . . . . . . . . . . . . . . . 18 (((𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘)) ∧ ((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ)) → (Σ𝑖 ∈ (0..^𝑦)((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖)) · 2) = ((𝑎 / 2) · 2))
169 nncn 11645 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 ∈ ℕ → 𝑎 ∈ ℂ)
170 2cnd 11714 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 ∈ ℕ → 2 ∈ ℂ)
171 2ne0 11740 . . . . . . . . . . . . . . . . . . . . . 22 2 ≠ 0
172171a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 ∈ ℕ → 2 ≠ 0)
173169, 170, 172divcan1d 11416 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ ℕ → ((𝑎 / 2) · 2) = 𝑎)
174173ad3antlr 729 . . . . . . . . . . . . . . . . . . 19 (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → ((𝑎 / 2) · 2) = 𝑎)
175174adantl 484 . . . . . . . . . . . . . . . . . 18 (((𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘)) ∧ ((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ)) → ((𝑎 / 2) · 2) = 𝑎)
176159, 168, 1753eqtrrd 2861 . . . . . . . . . . . . . . . . 17 (((𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘)) ∧ ((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ)) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))
177176ex 415 . . . . . . . . . . . . . . . 16 ((𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘)) → (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))
178177imim2i 16 . . . . . . . . . . . . . . 15 (((#b‘(𝑎 / 2)) = 𝑦 → (𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘))) → ((#b‘(𝑎 / 2)) = 𝑦 → (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
179178com13 88 . . . . . . . . . . . . . 14 (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → ((#b‘(𝑎 / 2)) = 𝑦 → (((#b‘(𝑎 / 2)) = 𝑦 → (𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘))) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
18019, 179sylbid 242 . . . . . . . . . . . . 13 (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → ((#b‘(𝑎 / 2)) = ((#b𝑎) − 1) → (((#b‘(𝑎 / 2)) = 𝑦 → (𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘))) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
181180com23 86 . . . . . . . . . . . 12 (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → (((#b‘(𝑎 / 2)) = 𝑦 → (𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘))) → ((#b‘(𝑎 / 2)) = ((#b𝑎) − 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
182181exp31 422 . . . . . . . . . . 11 (((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) → ((#b𝑎) = (𝑦 + 1) → (𝑦 ∈ ℕ → (((#b‘(𝑎 / 2)) = 𝑦 → (𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘))) → ((#b‘(𝑎 / 2)) = ((#b𝑎) − 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))))
183182com25 99 . . . . . . . . . 10 (((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) → ((#b‘(𝑎 / 2)) = ((#b𝑎) − 1) → (𝑦 ∈ ℕ → (((#b‘(𝑎 / 2)) = 𝑦 → (𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))))
184183com14 96 . . . . . . . . 9 (((#b‘(𝑎 / 2)) = 𝑦 → (𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘))) → ((#b‘(𝑎 / 2)) = ((#b𝑎) − 1) → (𝑦 ∈ ℕ → (((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))))
18512, 184syl 17 . . . . . . . 8 (((𝑎 / 2) ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))) → ((#b‘(𝑎 / 2)) = ((#b𝑎) − 1) → (𝑦 ∈ ℕ → (((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))))
186185ex 415 . . . . . . 7 ((𝑎 / 2) ∈ ℕ0 → (∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ((#b‘(𝑎 / 2)) = ((#b𝑎) − 1) → (𝑦 ∈ ℕ → (((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))))))
187186com25 99 . . . . . 6 ((𝑎 / 2) ∈ ℕ0 → (((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) → ((#b‘(𝑎 / 2)) = ((#b𝑎) − 1) → (𝑦 ∈ ℕ → (∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))))))
188187expdcom 417 . . . . 5 ((𝑎 / 2) ∈ ℕ → (𝑎 ∈ ℕ → ((𝑎 / 2) ∈ ℕ0 → ((#b‘(𝑎 / 2)) = ((#b𝑎) − 1) → (𝑦 ∈ ℕ → (∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))))))
1891, 188mpid 44 . . . 4 ((𝑎 / 2) ∈ ℕ → (𝑎 ∈ ℕ → ((#b‘(𝑎 / 2)) = ((#b𝑎) − 1) → (𝑦 ∈ ℕ → (∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))))))
190189impcom 410 . . 3 ((𝑎 ∈ ℕ ∧ (𝑎 / 2) ∈ ℕ) → ((#b‘(𝑎 / 2)) = ((#b𝑎) − 1) → (𝑦 ∈ ℕ → (∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))))
1913, 190mpd 15 . 2 ((𝑎 ∈ ℕ ∧ (𝑎 / 2) ∈ ℕ) → (𝑦 ∈ ℕ → (∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))))
192191imp 409 1 (((𝑎 ∈ ℕ ∧ (𝑎 / 2) ∈ ℕ) ∧ 𝑦 ∈ ℕ) → (∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  wral 3138  cfv 6354  (class class class)co 7155  Fincfn 8508  cc 10534  cr 10535  0cc0 10536  1c1 10537   + caddc 10539   · cmul 10541  +∞cpnf 10671  cmin 10869   / cdiv 11296  cn 11637  2c2 11691  0cn0 11896  cz 11980  cuz 12242  [,)cico 12739  ...cfz 12891  ..^cfzo 13032  cexp 13428  Σcsu 15041  #bcblen 44628  digitcdig 44654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-inf2 9103  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614  ax-addf 10615  ax-mulf 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-iin 4921  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7408  df-om 7580  df-1st 7688  df-2nd 7689  df-supp 7830  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-2o 8102  df-oadd 8105  df-er 8288  df-map 8407  df-pm 8408  df-ixp 8461  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-fsupp 8833  df-fi 8874  df-sup 8905  df-inf 8906  df-oi 8973  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-z 11981  df-dec 12098  df-uz 12243  df-q 12348  df-rp 12389  df-xneg 12506  df-xadd 12507  df-xmul 12508  df-ioo 12741  df-ioc 12742  df-ico 12743  df-icc 12744  df-fz 12892  df-fzo 13033  df-fl 13161  df-mod 13237  df-seq 13369  df-exp 13429  df-fac 13633  df-bc 13662  df-hash 13690  df-shft 14425  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-limsup 14827  df-clim 14844  df-rlim 14845  df-sum 15042  df-ef 15420  df-sin 15422  df-cos 15423  df-pi 15425  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-mulr 16578  df-starv 16579  df-sca 16580  df-vsca 16581  df-ip 16582  df-tset 16583  df-ple 16584  df-ds 16586  df-unif 16587  df-hom 16588  df-cco 16589  df-rest 16695  df-topn 16696  df-0g 16714  df-gsum 16715  df-topgen 16716  df-pt 16717  df-prds 16720  df-xrs 16774  df-qtop 16779  df-imas 16780  df-xps 16782  df-mre 16856  df-mrc 16857  df-acs 16859  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-submnd 17956  df-mulg 18224  df-cntz 18446  df-cmn 18907  df-psmet 20536  df-xmet 20537  df-met 20538  df-bl 20539  df-mopn 20540  df-fbas 20541  df-fg 20542  df-cnfld 20545  df-top 21501  df-topon 21518  df-topsp 21540  df-bases 21553  df-cld 21626  df-ntr 21627  df-cls 21628  df-nei 21705  df-lp 21743  df-perf 21744  df-cn 21834  df-cnp 21835  df-haus 21922  df-tx 22169  df-hmeo 22362  df-fil 22453  df-fm 22545  df-flim 22546  df-flf 22547  df-xms 22929  df-ms 22930  df-tms 22931  df-cncf 23485  df-limc 24463  df-dv 24464  df-log 25139  df-logb 25342  df-blen 44629  df-dig 44655
This theorem is referenced by:  nn0sumshdiglem1  44680
  Copyright terms: Public domain W3C validator