![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnacl | Structured version Visualization version GIF version |
Description: Closure of addition of natural numbers. Proposition 8.9 of [TakeutiZaring] p. 59. (Contributed by NM, 20-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
nnacl | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +𝑜 𝐵) ∈ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 6698 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝐴 +𝑜 𝑥) = (𝐴 +𝑜 𝐵)) | |
2 | 1 | eleq1d 2715 | . . . 4 ⊢ (𝑥 = 𝐵 → ((𝐴 +𝑜 𝑥) ∈ ω ↔ (𝐴 +𝑜 𝐵) ∈ ω)) |
3 | 2 | imbi2d 329 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝐴 ∈ ω → (𝐴 +𝑜 𝑥) ∈ ω) ↔ (𝐴 ∈ ω → (𝐴 +𝑜 𝐵) ∈ ω))) |
4 | oveq2 6698 | . . . . 5 ⊢ (𝑥 = ∅ → (𝐴 +𝑜 𝑥) = (𝐴 +𝑜 ∅)) | |
5 | 4 | eleq1d 2715 | . . . 4 ⊢ (𝑥 = ∅ → ((𝐴 +𝑜 𝑥) ∈ ω ↔ (𝐴 +𝑜 ∅) ∈ ω)) |
6 | oveq2 6698 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝐴 +𝑜 𝑥) = (𝐴 +𝑜 𝑦)) | |
7 | 6 | eleq1d 2715 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝐴 +𝑜 𝑥) ∈ ω ↔ (𝐴 +𝑜 𝑦) ∈ ω)) |
8 | oveq2 6698 | . . . . 5 ⊢ (𝑥 = suc 𝑦 → (𝐴 +𝑜 𝑥) = (𝐴 +𝑜 suc 𝑦)) | |
9 | 8 | eleq1d 2715 | . . . 4 ⊢ (𝑥 = suc 𝑦 → ((𝐴 +𝑜 𝑥) ∈ ω ↔ (𝐴 +𝑜 suc 𝑦) ∈ ω)) |
10 | nna0 7729 | . . . . . 6 ⊢ (𝐴 ∈ ω → (𝐴 +𝑜 ∅) = 𝐴) | |
11 | 10 | eleq1d 2715 | . . . . 5 ⊢ (𝐴 ∈ ω → ((𝐴 +𝑜 ∅) ∈ ω ↔ 𝐴 ∈ ω)) |
12 | 11 | ibir 257 | . . . 4 ⊢ (𝐴 ∈ ω → (𝐴 +𝑜 ∅) ∈ ω) |
13 | peano2 7128 | . . . . . 6 ⊢ ((𝐴 +𝑜 𝑦) ∈ ω → suc (𝐴 +𝑜 𝑦) ∈ ω) | |
14 | nnasuc 7731 | . . . . . . 7 ⊢ ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +𝑜 suc 𝑦) = suc (𝐴 +𝑜 𝑦)) | |
15 | 14 | eleq1d 2715 | . . . . . 6 ⊢ ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 +𝑜 suc 𝑦) ∈ ω ↔ suc (𝐴 +𝑜 𝑦) ∈ ω)) |
16 | 13, 15 | syl5ibr 236 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 +𝑜 𝑦) ∈ ω → (𝐴 +𝑜 suc 𝑦) ∈ ω)) |
17 | 16 | expcom 450 | . . . 4 ⊢ (𝑦 ∈ ω → (𝐴 ∈ ω → ((𝐴 +𝑜 𝑦) ∈ ω → (𝐴 +𝑜 suc 𝑦) ∈ ω))) |
18 | 5, 7, 9, 12, 17 | finds2 7136 | . . 3 ⊢ (𝑥 ∈ ω → (𝐴 ∈ ω → (𝐴 +𝑜 𝑥) ∈ ω)) |
19 | 3, 18 | vtoclga 3303 | . 2 ⊢ (𝐵 ∈ ω → (𝐴 ∈ ω → (𝐴 +𝑜 𝐵) ∈ ω)) |
20 | 19 | impcom 445 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +𝑜 𝐵) ∈ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∅c0 3948 suc csuc 5763 (class class class)co 6690 ωcom 7107 +𝑜 coa 7602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-oadd 7609 |
This theorem is referenced by: nnmcl 7737 nnacli 7739 nnarcl 7741 nnaord 7744 nnawordi 7746 nnaass 7747 nndi 7748 nnaword 7752 nnawordex 7762 oaabslem 7768 unfilem1 8265 unfi 8268 nnacda 9061 ficardun 9062 ficardun2 9063 pwsdompw 9064 addclpi 9752 hashgadd 13204 hashdom 13206 finxpreclem4 33361 |
Copyright terms: Public domain | W3C validator |