Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnacl Structured version   Visualization version   GIF version

Theorem nnacl 7736
 Description: Closure of addition of natural numbers. Proposition 8.9 of [TakeutiZaring] p. 59. (Contributed by NM, 20-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
nnacl ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +𝑜 𝐵) ∈ ω)

Proof of Theorem nnacl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6698 . . . . 5 (𝑥 = 𝐵 → (𝐴 +𝑜 𝑥) = (𝐴 +𝑜 𝐵))
21eleq1d 2715 . . . 4 (𝑥 = 𝐵 → ((𝐴 +𝑜 𝑥) ∈ ω ↔ (𝐴 +𝑜 𝐵) ∈ ω))
32imbi2d 329 . . 3 (𝑥 = 𝐵 → ((𝐴 ∈ ω → (𝐴 +𝑜 𝑥) ∈ ω) ↔ (𝐴 ∈ ω → (𝐴 +𝑜 𝐵) ∈ ω)))
4 oveq2 6698 . . . . 5 (𝑥 = ∅ → (𝐴 +𝑜 𝑥) = (𝐴 +𝑜 ∅))
54eleq1d 2715 . . . 4 (𝑥 = ∅ → ((𝐴 +𝑜 𝑥) ∈ ω ↔ (𝐴 +𝑜 ∅) ∈ ω))
6 oveq2 6698 . . . . 5 (𝑥 = 𝑦 → (𝐴 +𝑜 𝑥) = (𝐴 +𝑜 𝑦))
76eleq1d 2715 . . . 4 (𝑥 = 𝑦 → ((𝐴 +𝑜 𝑥) ∈ ω ↔ (𝐴 +𝑜 𝑦) ∈ ω))
8 oveq2 6698 . . . . 5 (𝑥 = suc 𝑦 → (𝐴 +𝑜 𝑥) = (𝐴 +𝑜 suc 𝑦))
98eleq1d 2715 . . . 4 (𝑥 = suc 𝑦 → ((𝐴 +𝑜 𝑥) ∈ ω ↔ (𝐴 +𝑜 suc 𝑦) ∈ ω))
10 nna0 7729 . . . . . 6 (𝐴 ∈ ω → (𝐴 +𝑜 ∅) = 𝐴)
1110eleq1d 2715 . . . . 5 (𝐴 ∈ ω → ((𝐴 +𝑜 ∅) ∈ ω ↔ 𝐴 ∈ ω))
1211ibir 257 . . . 4 (𝐴 ∈ ω → (𝐴 +𝑜 ∅) ∈ ω)
13 peano2 7128 . . . . . 6 ((𝐴 +𝑜 𝑦) ∈ ω → suc (𝐴 +𝑜 𝑦) ∈ ω)
14 nnasuc 7731 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +𝑜 suc 𝑦) = suc (𝐴 +𝑜 𝑦))
1514eleq1d 2715 . . . . . 6 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 +𝑜 suc 𝑦) ∈ ω ↔ suc (𝐴 +𝑜 𝑦) ∈ ω))
1613, 15syl5ibr 236 . . . . 5 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 +𝑜 𝑦) ∈ ω → (𝐴 +𝑜 suc 𝑦) ∈ ω))
1716expcom 450 . . . 4 (𝑦 ∈ ω → (𝐴 ∈ ω → ((𝐴 +𝑜 𝑦) ∈ ω → (𝐴 +𝑜 suc 𝑦) ∈ ω)))
185, 7, 9, 12, 17finds2 7136 . . 3 (𝑥 ∈ ω → (𝐴 ∈ ω → (𝐴 +𝑜 𝑥) ∈ ω))
193, 18vtoclga 3303 . 2 (𝐵 ∈ ω → (𝐴 ∈ ω → (𝐴 +𝑜 𝐵) ∈ ω))
2019impcom 445 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +𝑜 𝐵) ∈ ω)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1523   ∈ wcel 2030  ∅c0 3948  suc csuc 5763  (class class class)co 6690  ωcom 7107   +𝑜 coa 7602 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-oadd 7609 This theorem is referenced by:  nnmcl  7737  nnacli  7739  nnarcl  7741  nnaord  7744  nnawordi  7746  nnaass  7747  nndi  7748  nnaword  7752  nnawordex  7762  oaabslem  7768  unfilem1  8265  unfi  8268  nnacda  9061  ficardun  9062  ficardun2  9063  pwsdompw  9064  addclpi  9752  hashgadd  13204  hashdom  13206  finxpreclem4  33361
 Copyright terms: Public domain W3C validator