MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnaddcl Structured version   Visualization version   GIF version

Theorem nnaddcl 10891
Description: Closure of addition of positive integers, proved by induction on the second addend. (Contributed by NM, 12-Jan-1997.)
Assertion
Ref Expression
nnaddcl ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 + 𝐵) ∈ ℕ)

Proof of Theorem nnaddcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6534 . . . . 5 (𝑥 = 1 → (𝐴 + 𝑥) = (𝐴 + 1))
21eleq1d 2671 . . . 4 (𝑥 = 1 → ((𝐴 + 𝑥) ∈ ℕ ↔ (𝐴 + 1) ∈ ℕ))
32imbi2d 328 . . 3 (𝑥 = 1 → ((𝐴 ∈ ℕ → (𝐴 + 𝑥) ∈ ℕ) ↔ (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ)))
4 oveq2 6534 . . . . 5 (𝑥 = 𝑦 → (𝐴 + 𝑥) = (𝐴 + 𝑦))
54eleq1d 2671 . . . 4 (𝑥 = 𝑦 → ((𝐴 + 𝑥) ∈ ℕ ↔ (𝐴 + 𝑦) ∈ ℕ))
65imbi2d 328 . . 3 (𝑥 = 𝑦 → ((𝐴 ∈ ℕ → (𝐴 + 𝑥) ∈ ℕ) ↔ (𝐴 ∈ ℕ → (𝐴 + 𝑦) ∈ ℕ)))
7 oveq2 6534 . . . . 5 (𝑥 = (𝑦 + 1) → (𝐴 + 𝑥) = (𝐴 + (𝑦 + 1)))
87eleq1d 2671 . . . 4 (𝑥 = (𝑦 + 1) → ((𝐴 + 𝑥) ∈ ℕ ↔ (𝐴 + (𝑦 + 1)) ∈ ℕ))
98imbi2d 328 . . 3 (𝑥 = (𝑦 + 1) → ((𝐴 ∈ ℕ → (𝐴 + 𝑥) ∈ ℕ) ↔ (𝐴 ∈ ℕ → (𝐴 + (𝑦 + 1)) ∈ ℕ)))
10 oveq2 6534 . . . . 5 (𝑥 = 𝐵 → (𝐴 + 𝑥) = (𝐴 + 𝐵))
1110eleq1d 2671 . . . 4 (𝑥 = 𝐵 → ((𝐴 + 𝑥) ∈ ℕ ↔ (𝐴 + 𝐵) ∈ ℕ))
1211imbi2d 328 . . 3 (𝑥 = 𝐵 → ((𝐴 ∈ ℕ → (𝐴 + 𝑥) ∈ ℕ) ↔ (𝐴 ∈ ℕ → (𝐴 + 𝐵) ∈ ℕ)))
13 peano2nn 10881 . . 3 (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ)
14 peano2nn 10881 . . . . . 6 ((𝐴 + 𝑦) ∈ ℕ → ((𝐴 + 𝑦) + 1) ∈ ℕ)
15 nncn 10877 . . . . . . . 8 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
16 nncn 10877 . . . . . . . 8 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
17 ax-1cn 9850 . . . . . . . . 9 1 ∈ ℂ
18 addass 9879 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 + 𝑦) + 1) = (𝐴 + (𝑦 + 1)))
1917, 18mp3an3 1404 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝐴 + 𝑦) + 1) = (𝐴 + (𝑦 + 1)))
2015, 16, 19syl2an 492 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝐴 + 𝑦) + 1) = (𝐴 + (𝑦 + 1)))
2120eleq1d 2671 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (((𝐴 + 𝑦) + 1) ∈ ℕ ↔ (𝐴 + (𝑦 + 1)) ∈ ℕ))
2214, 21syl5ib 232 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝐴 + 𝑦) ∈ ℕ → (𝐴 + (𝑦 + 1)) ∈ ℕ))
2322expcom 449 . . . 4 (𝑦 ∈ ℕ → (𝐴 ∈ ℕ → ((𝐴 + 𝑦) ∈ ℕ → (𝐴 + (𝑦 + 1)) ∈ ℕ)))
2423a2d 29 . . 3 (𝑦 ∈ ℕ → ((𝐴 ∈ ℕ → (𝐴 + 𝑦) ∈ ℕ) → (𝐴 ∈ ℕ → (𝐴 + (𝑦 + 1)) ∈ ℕ)))
253, 6, 9, 12, 13, 24nnind 10887 . 2 (𝐵 ∈ ℕ → (𝐴 ∈ ℕ → (𝐴 + 𝐵) ∈ ℕ))
2625impcom 444 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 + 𝐵) ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1976  (class class class)co 6526  cc 9790  1c1 9793   + caddc 9795  cn 10869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4711  ax-pow 4763  ax-pr 4827  ax-un 6824  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-addass 9857  ax-i2m1 9860  ax-1ne0 9861  ax-rrecex 9864  ax-cnre 9865
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4938  df-id 4942  df-po 4948  df-so 4949  df-fr 4986  df-we 4988  df-xp 5033  df-rel 5034  df-cnv 5035  df-co 5036  df-dm 5037  df-rn 5038  df-res 5039  df-ima 5040  df-pred 5582  df-ord 5628  df-on 5629  df-lim 5630  df-suc 5631  df-iota 5753  df-fun 5791  df-fn 5792  df-f 5793  df-f1 5794  df-fo 5795  df-f1o 5796  df-fv 5797  df-ov 6529  df-om 6935  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-nn 10870
This theorem is referenced by:  nnmulcl  10892  nnaddcld  10916  nnnn0addcl  11172  nn0addcl  11177  zaddcl  11252  9p1e10  11330  pythagtriplem4  15310  vdwapun  15464  vdwap1  15467  vdwlem2  15472  prmgaplem7  15547  prmgapprmolem  15551  mulgnndir  17340  mulgnndirOLD  17341  uniioombllem3  23103  ballotlem1  29668  ballotlem2  29670  ballotlemfmpn  29676  ballotlem4  29680  ballotlemimin  29687  ballotlemsdom  29693  ballotlemsel1i  29694  ballotlemfrceq  29710  ballotlemfrcn0  29711  ballotlem1ri  29716  ballotth  29719  nndivsub  31419  gbepos  39964  gbopos  39965  av-numclwwlk2lem1  41513  nnsgrpmgm  41587
  Copyright terms: Public domain W3C validator