MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnarcl Structured version   Visualization version   GIF version

Theorem nnarcl 8236
Description: Reverse closure law for addition of natural numbers. Exercise 1 of [TakeutiZaring] p. 62 and its converse. (Contributed by NM, 12-Dec-2004.)
Assertion
Ref Expression
nnarcl ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) ∈ ω ↔ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)))

Proof of Theorem nnarcl
StepHypRef Expression
1 oaword1 8172 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ⊆ (𝐴 +o 𝐵))
2 eloni 6196 . . . . . . 7 (𝐴 ∈ On → Ord 𝐴)
3 ordom 7583 . . . . . . 7 Ord ω
4 ordtr2 6230 . . . . . . 7 ((Ord 𝐴 ∧ Ord ω) → ((𝐴 ⊆ (𝐴 +o 𝐵) ∧ (𝐴 +o 𝐵) ∈ ω) → 𝐴 ∈ ω))
52, 3, 4sylancl 588 . . . . . 6 (𝐴 ∈ On → ((𝐴 ⊆ (𝐴 +o 𝐵) ∧ (𝐴 +o 𝐵) ∈ ω) → 𝐴 ∈ ω))
65expd 418 . . . . 5 (𝐴 ∈ On → (𝐴 ⊆ (𝐴 +o 𝐵) → ((𝐴 +o 𝐵) ∈ ω → 𝐴 ∈ ω)))
76adantr 483 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ (𝐴 +o 𝐵) → ((𝐴 +o 𝐵) ∈ ω → 𝐴 ∈ ω)))
81, 7mpd 15 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) ∈ ω → 𝐴 ∈ ω))
9 oaword2 8173 . . . . 5 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → 𝐵 ⊆ (𝐴 +o 𝐵))
109ancoms 461 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐵 ⊆ (𝐴 +o 𝐵))
11 eloni 6196 . . . . . . 7 (𝐵 ∈ On → Ord 𝐵)
12 ordtr2 6230 . . . . . . 7 ((Ord 𝐵 ∧ Ord ω) → ((𝐵 ⊆ (𝐴 +o 𝐵) ∧ (𝐴 +o 𝐵) ∈ ω) → 𝐵 ∈ ω))
1311, 3, 12sylancl 588 . . . . . 6 (𝐵 ∈ On → ((𝐵 ⊆ (𝐴 +o 𝐵) ∧ (𝐴 +o 𝐵) ∈ ω) → 𝐵 ∈ ω))
1413expd 418 . . . . 5 (𝐵 ∈ On → (𝐵 ⊆ (𝐴 +o 𝐵) → ((𝐴 +o 𝐵) ∈ ω → 𝐵 ∈ ω)))
1514adantl 484 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 ⊆ (𝐴 +o 𝐵) → ((𝐴 +o 𝐵) ∈ ω → 𝐵 ∈ ω)))
1610, 15mpd 15 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) ∈ ω → 𝐵 ∈ ω))
178, 16jcad 515 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) ∈ ω → (𝐴 ∈ ω ∧ 𝐵 ∈ ω)))
18 nnacl 8231 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +o 𝐵) ∈ ω)
1917, 18impbid1 227 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) ∈ ω ↔ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wcel 2110  wss 3936  Ord word 6185  Oncon0 6186  (class class class)co 7150  ωcom 7574   +o coa 8093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-oadd 8100
This theorem is referenced by:  finxpreclem4  34669
  Copyright terms: Public domain W3C validator