MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnawordi Structured version   Visualization version   GIF version

Theorem nnawordi 7646
Description: Adding to both sides of an inequality in ω. (Contributed by Scott Fenton, 16-Apr-2012.) (Revised by Mario Carneiro, 12-May-2012.)
Assertion
Ref Expression
nnawordi ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 → (𝐴 +𝑜 𝐶) ⊆ (𝐵 +𝑜 𝐶)))

Proof of Theorem nnawordi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6612 . . . . . . 7 (𝑥 = ∅ → (𝐴 +𝑜 𝑥) = (𝐴 +𝑜 ∅))
2 oveq2 6612 . . . . . . 7 (𝑥 = ∅ → (𝐵 +𝑜 𝑥) = (𝐵 +𝑜 ∅))
31, 2sseq12d 3613 . . . . . 6 (𝑥 = ∅ → ((𝐴 +𝑜 𝑥) ⊆ (𝐵 +𝑜 𝑥) ↔ (𝐴 +𝑜 ∅) ⊆ (𝐵 +𝑜 ∅)))
43imbi2d 330 . . . . 5 (𝑥 = ∅ → ((𝐴𝐵 → (𝐴 +𝑜 𝑥) ⊆ (𝐵 +𝑜 𝑥)) ↔ (𝐴𝐵 → (𝐴 +𝑜 ∅) ⊆ (𝐵 +𝑜 ∅))))
54imbi2d 330 . . . 4 (𝑥 = ∅ → (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (𝐴 +𝑜 𝑥) ⊆ (𝐵 +𝑜 𝑥))) ↔ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (𝐴 +𝑜 ∅) ⊆ (𝐵 +𝑜 ∅)))))
6 oveq2 6612 . . . . . . 7 (𝑥 = 𝑦 → (𝐴 +𝑜 𝑥) = (𝐴 +𝑜 𝑦))
7 oveq2 6612 . . . . . . 7 (𝑥 = 𝑦 → (𝐵 +𝑜 𝑥) = (𝐵 +𝑜 𝑦))
86, 7sseq12d 3613 . . . . . 6 (𝑥 = 𝑦 → ((𝐴 +𝑜 𝑥) ⊆ (𝐵 +𝑜 𝑥) ↔ (𝐴 +𝑜 𝑦) ⊆ (𝐵 +𝑜 𝑦)))
98imbi2d 330 . . . . 5 (𝑥 = 𝑦 → ((𝐴𝐵 → (𝐴 +𝑜 𝑥) ⊆ (𝐵 +𝑜 𝑥)) ↔ (𝐴𝐵 → (𝐴 +𝑜 𝑦) ⊆ (𝐵 +𝑜 𝑦))))
109imbi2d 330 . . . 4 (𝑥 = 𝑦 → (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (𝐴 +𝑜 𝑥) ⊆ (𝐵 +𝑜 𝑥))) ↔ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (𝐴 +𝑜 𝑦) ⊆ (𝐵 +𝑜 𝑦)))))
11 oveq2 6612 . . . . . . 7 (𝑥 = suc 𝑦 → (𝐴 +𝑜 𝑥) = (𝐴 +𝑜 suc 𝑦))
12 oveq2 6612 . . . . . . 7 (𝑥 = suc 𝑦 → (𝐵 +𝑜 𝑥) = (𝐵 +𝑜 suc 𝑦))
1311, 12sseq12d 3613 . . . . . 6 (𝑥 = suc 𝑦 → ((𝐴 +𝑜 𝑥) ⊆ (𝐵 +𝑜 𝑥) ↔ (𝐴 +𝑜 suc 𝑦) ⊆ (𝐵 +𝑜 suc 𝑦)))
1413imbi2d 330 . . . . 5 (𝑥 = suc 𝑦 → ((𝐴𝐵 → (𝐴 +𝑜 𝑥) ⊆ (𝐵 +𝑜 𝑥)) ↔ (𝐴𝐵 → (𝐴 +𝑜 suc 𝑦) ⊆ (𝐵 +𝑜 suc 𝑦))))
1514imbi2d 330 . . . 4 (𝑥 = suc 𝑦 → (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (𝐴 +𝑜 𝑥) ⊆ (𝐵 +𝑜 𝑥))) ↔ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (𝐴 +𝑜 suc 𝑦) ⊆ (𝐵 +𝑜 suc 𝑦)))))
16 oveq2 6612 . . . . . . 7 (𝑥 = 𝐶 → (𝐴 +𝑜 𝑥) = (𝐴 +𝑜 𝐶))
17 oveq2 6612 . . . . . . 7 (𝑥 = 𝐶 → (𝐵 +𝑜 𝑥) = (𝐵 +𝑜 𝐶))
1816, 17sseq12d 3613 . . . . . 6 (𝑥 = 𝐶 → ((𝐴 +𝑜 𝑥) ⊆ (𝐵 +𝑜 𝑥) ↔ (𝐴 +𝑜 𝐶) ⊆ (𝐵 +𝑜 𝐶)))
1918imbi2d 330 . . . . 5 (𝑥 = 𝐶 → ((𝐴𝐵 → (𝐴 +𝑜 𝑥) ⊆ (𝐵 +𝑜 𝑥)) ↔ (𝐴𝐵 → (𝐴 +𝑜 𝐶) ⊆ (𝐵 +𝑜 𝐶))))
2019imbi2d 330 . . . 4 (𝑥 = 𝐶 → (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (𝐴 +𝑜 𝑥) ⊆ (𝐵 +𝑜 𝑥))) ↔ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (𝐴 +𝑜 𝐶) ⊆ (𝐵 +𝑜 𝐶)))))
21 nnon 7018 . . . . 5 (𝐴 ∈ ω → 𝐴 ∈ On)
22 nnon 7018 . . . . 5 (𝐵 ∈ ω → 𝐵 ∈ On)
23 oa0 7541 . . . . . . . 8 (𝐴 ∈ On → (𝐴 +𝑜 ∅) = 𝐴)
2423adantr 481 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +𝑜 ∅) = 𝐴)
25 oa0 7541 . . . . . . . 8 (𝐵 ∈ On → (𝐵 +𝑜 ∅) = 𝐵)
2625adantl 482 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 +𝑜 ∅) = 𝐵)
2724, 26sseq12d 3613 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +𝑜 ∅) ⊆ (𝐵 +𝑜 ∅) ↔ 𝐴𝐵))
2827biimprd 238 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → (𝐴 +𝑜 ∅) ⊆ (𝐵 +𝑜 ∅)))
2921, 22, 28syl2an 494 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (𝐴 +𝑜 ∅) ⊆ (𝐵 +𝑜 ∅)))
30 nnacl 7636 . . . . . . . . . . . . . 14 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +𝑜 𝑦) ∈ ω)
3130ancoms 469 . . . . . . . . . . . . 13 ((𝑦 ∈ ω ∧ 𝐴 ∈ ω) → (𝐴 +𝑜 𝑦) ∈ ω)
3231adantrr 752 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐴 +𝑜 𝑦) ∈ ω)
33 nnon 7018 . . . . . . . . . . . 12 ((𝐴 +𝑜 𝑦) ∈ ω → (𝐴 +𝑜 𝑦) ∈ On)
34 eloni 5692 . . . . . . . . . . . 12 ((𝐴 +𝑜 𝑦) ∈ On → Ord (𝐴 +𝑜 𝑦))
3532, 33, 343syl 18 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → Ord (𝐴 +𝑜 𝑦))
36 nnacl 7636 . . . . . . . . . . . . . 14 ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐵 +𝑜 𝑦) ∈ ω)
3736ancoms 469 . . . . . . . . . . . . 13 ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵 +𝑜 𝑦) ∈ ω)
3837adantrl 751 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐵 +𝑜 𝑦) ∈ ω)
39 nnon 7018 . . . . . . . . . . . 12 ((𝐵 +𝑜 𝑦) ∈ ω → (𝐵 +𝑜 𝑦) ∈ On)
40 eloni 5692 . . . . . . . . . . . 12 ((𝐵 +𝑜 𝑦) ∈ On → Ord (𝐵 +𝑜 𝑦))
4138, 39, 403syl 18 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → Ord (𝐵 +𝑜 𝑦))
42 ordsucsssuc 6970 . . . . . . . . . . 11 ((Ord (𝐴 +𝑜 𝑦) ∧ Ord (𝐵 +𝑜 𝑦)) → ((𝐴 +𝑜 𝑦) ⊆ (𝐵 +𝑜 𝑦) ↔ suc (𝐴 +𝑜 𝑦) ⊆ suc (𝐵 +𝑜 𝑦)))
4335, 41, 42syl2anc 692 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝐴 +𝑜 𝑦) ⊆ (𝐵 +𝑜 𝑦) ↔ suc (𝐴 +𝑜 𝑦) ⊆ suc (𝐵 +𝑜 𝑦)))
4443biimpa 501 . . . . . . . . 9 (((𝑦 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) ∧ (𝐴 +𝑜 𝑦) ⊆ (𝐵 +𝑜 𝑦)) → suc (𝐴 +𝑜 𝑦) ⊆ suc (𝐵 +𝑜 𝑦))
45 nnasuc 7631 . . . . . . . . . . . . 13 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +𝑜 suc 𝑦) = suc (𝐴 +𝑜 𝑦))
4645ancoms 469 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ 𝐴 ∈ ω) → (𝐴 +𝑜 suc 𝑦) = suc (𝐴 +𝑜 𝑦))
4746adantrr 752 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐴 +𝑜 suc 𝑦) = suc (𝐴 +𝑜 𝑦))
48 nnasuc 7631 . . . . . . . . . . . . 13 ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐵 +𝑜 suc 𝑦) = suc (𝐵 +𝑜 𝑦))
4948ancoms 469 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵 +𝑜 suc 𝑦) = suc (𝐵 +𝑜 𝑦))
5049adantrl 751 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐵 +𝑜 suc 𝑦) = suc (𝐵 +𝑜 𝑦))
5147, 50sseq12d 3613 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝐴 +𝑜 suc 𝑦) ⊆ (𝐵 +𝑜 suc 𝑦) ↔ suc (𝐴 +𝑜 𝑦) ⊆ suc (𝐵 +𝑜 𝑦)))
5251adantr 481 . . . . . . . . 9 (((𝑦 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) ∧ (𝐴 +𝑜 𝑦) ⊆ (𝐵 +𝑜 𝑦)) → ((𝐴 +𝑜 suc 𝑦) ⊆ (𝐵 +𝑜 suc 𝑦) ↔ suc (𝐴 +𝑜 𝑦) ⊆ suc (𝐵 +𝑜 𝑦)))
5344, 52mpbird 247 . . . . . . . 8 (((𝑦 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) ∧ (𝐴 +𝑜 𝑦) ⊆ (𝐵 +𝑜 𝑦)) → (𝐴 +𝑜 suc 𝑦) ⊆ (𝐵 +𝑜 suc 𝑦))
5453ex 450 . . . . . . 7 ((𝑦 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝐴 +𝑜 𝑦) ⊆ (𝐵 +𝑜 𝑦) → (𝐴 +𝑜 suc 𝑦) ⊆ (𝐵 +𝑜 suc 𝑦)))
5554imim2d 57 . . . . . 6 ((𝑦 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝐴𝐵 → (𝐴 +𝑜 𝑦) ⊆ (𝐵 +𝑜 𝑦)) → (𝐴𝐵 → (𝐴 +𝑜 suc 𝑦) ⊆ (𝐵 +𝑜 suc 𝑦))))
5655ex 450 . . . . 5 (𝑦 ∈ ω → ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴𝐵 → (𝐴 +𝑜 𝑦) ⊆ (𝐵 +𝑜 𝑦)) → (𝐴𝐵 → (𝐴 +𝑜 suc 𝑦) ⊆ (𝐵 +𝑜 suc 𝑦)))))
5756a2d 29 . . . 4 (𝑦 ∈ ω → (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (𝐴 +𝑜 𝑦) ⊆ (𝐵 +𝑜 𝑦))) → ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (𝐴 +𝑜 suc 𝑦) ⊆ (𝐵 +𝑜 suc 𝑦)))))
585, 10, 15, 20, 29, 57finds 7039 . . 3 (𝐶 ∈ ω → ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (𝐴 +𝑜 𝐶) ⊆ (𝐵 +𝑜 𝐶))))
5958com12 32 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐶 ∈ ω → (𝐴𝐵 → (𝐴 +𝑜 𝐶) ⊆ (𝐵 +𝑜 𝐶))))
60593impia 1258 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 → (𝐴 +𝑜 𝐶) ⊆ (𝐵 +𝑜 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wss 3555  c0 3891  Ord word 5681  Oncon0 5682  suc csuc 5684  (class class class)co 6604  ωcom 7012   +𝑜 coa 7502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-oadd 7509
This theorem is referenced by:  omopthlem2  7681
  Copyright terms: Public domain W3C validator