MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnawordi Structured version   Visualization version   GIF version

Theorem nnawordi 8241
Description: Adding to both sides of an inequality in ω. (Contributed by Scott Fenton, 16-Apr-2012.) (Revised by Mario Carneiro, 12-May-2012.)
Assertion
Ref Expression
nnawordi ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 → (𝐴 +o 𝐶) ⊆ (𝐵 +o 𝐶)))

Proof of Theorem nnawordi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7158 . . . . . . 7 (𝑥 = ∅ → (𝐴 +o 𝑥) = (𝐴 +o ∅))
2 oveq2 7158 . . . . . . 7 (𝑥 = ∅ → (𝐵 +o 𝑥) = (𝐵 +o ∅))
31, 2sseq12d 3999 . . . . . 6 (𝑥 = ∅ → ((𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥) ↔ (𝐴 +o ∅) ⊆ (𝐵 +o ∅)))
43imbi2d 343 . . . . 5 (𝑥 = ∅ → ((𝐴𝐵 → (𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥)) ↔ (𝐴𝐵 → (𝐴 +o ∅) ⊆ (𝐵 +o ∅))))
54imbi2d 343 . . . 4 (𝑥 = ∅ → (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥))) ↔ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (𝐴 +o ∅) ⊆ (𝐵 +o ∅)))))
6 oveq2 7158 . . . . . . 7 (𝑥 = 𝑦 → (𝐴 +o 𝑥) = (𝐴 +o 𝑦))
7 oveq2 7158 . . . . . . 7 (𝑥 = 𝑦 → (𝐵 +o 𝑥) = (𝐵 +o 𝑦))
86, 7sseq12d 3999 . . . . . 6 (𝑥 = 𝑦 → ((𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥) ↔ (𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦)))
98imbi2d 343 . . . . 5 (𝑥 = 𝑦 → ((𝐴𝐵 → (𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥)) ↔ (𝐴𝐵 → (𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦))))
109imbi2d 343 . . . 4 (𝑥 = 𝑦 → (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥))) ↔ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦)))))
11 oveq2 7158 . . . . . . 7 (𝑥 = suc 𝑦 → (𝐴 +o 𝑥) = (𝐴 +o suc 𝑦))
12 oveq2 7158 . . . . . . 7 (𝑥 = suc 𝑦 → (𝐵 +o 𝑥) = (𝐵 +o suc 𝑦))
1311, 12sseq12d 3999 . . . . . 6 (𝑥 = suc 𝑦 → ((𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥) ↔ (𝐴 +o suc 𝑦) ⊆ (𝐵 +o suc 𝑦)))
1413imbi2d 343 . . . . 5 (𝑥 = suc 𝑦 → ((𝐴𝐵 → (𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥)) ↔ (𝐴𝐵 → (𝐴 +o suc 𝑦) ⊆ (𝐵 +o suc 𝑦))))
1514imbi2d 343 . . . 4 (𝑥 = suc 𝑦 → (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥))) ↔ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (𝐴 +o suc 𝑦) ⊆ (𝐵 +o suc 𝑦)))))
16 oveq2 7158 . . . . . . 7 (𝑥 = 𝐶 → (𝐴 +o 𝑥) = (𝐴 +o 𝐶))
17 oveq2 7158 . . . . . . 7 (𝑥 = 𝐶 → (𝐵 +o 𝑥) = (𝐵 +o 𝐶))
1816, 17sseq12d 3999 . . . . . 6 (𝑥 = 𝐶 → ((𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥) ↔ (𝐴 +o 𝐶) ⊆ (𝐵 +o 𝐶)))
1918imbi2d 343 . . . . 5 (𝑥 = 𝐶 → ((𝐴𝐵 → (𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥)) ↔ (𝐴𝐵 → (𝐴 +o 𝐶) ⊆ (𝐵 +o 𝐶))))
2019imbi2d 343 . . . 4 (𝑥 = 𝐶 → (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥))) ↔ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (𝐴 +o 𝐶) ⊆ (𝐵 +o 𝐶)))))
21 nnon 7580 . . . . 5 (𝐴 ∈ ω → 𝐴 ∈ On)
22 nnon 7580 . . . . 5 (𝐵 ∈ ω → 𝐵 ∈ On)
23 oa0 8135 . . . . . . . 8 (𝐴 ∈ On → (𝐴 +o ∅) = 𝐴)
2423adantr 483 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o ∅) = 𝐴)
25 oa0 8135 . . . . . . . 8 (𝐵 ∈ On → (𝐵 +o ∅) = 𝐵)
2625adantl 484 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 +o ∅) = 𝐵)
2724, 26sseq12d 3999 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o ∅) ⊆ (𝐵 +o ∅) ↔ 𝐴𝐵))
2827biimprd 250 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → (𝐴 +o ∅) ⊆ (𝐵 +o ∅)))
2921, 22, 28syl2an 597 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (𝐴 +o ∅) ⊆ (𝐵 +o ∅)))
30 nnacl 8231 . . . . . . . . . . . . . 14 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +o 𝑦) ∈ ω)
3130ancoms 461 . . . . . . . . . . . . 13 ((𝑦 ∈ ω ∧ 𝐴 ∈ ω) → (𝐴 +o 𝑦) ∈ ω)
3231adantrr 715 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐴 +o 𝑦) ∈ ω)
33 nnon 7580 . . . . . . . . . . . 12 ((𝐴 +o 𝑦) ∈ ω → (𝐴 +o 𝑦) ∈ On)
34 eloni 6195 . . . . . . . . . . . 12 ((𝐴 +o 𝑦) ∈ On → Ord (𝐴 +o 𝑦))
3532, 33, 343syl 18 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → Ord (𝐴 +o 𝑦))
36 nnacl 8231 . . . . . . . . . . . . . 14 ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐵 +o 𝑦) ∈ ω)
3736ancoms 461 . . . . . . . . . . . . 13 ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵 +o 𝑦) ∈ ω)
3837adantrl 714 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐵 +o 𝑦) ∈ ω)
39 nnon 7580 . . . . . . . . . . . 12 ((𝐵 +o 𝑦) ∈ ω → (𝐵 +o 𝑦) ∈ On)
40 eloni 6195 . . . . . . . . . . . 12 ((𝐵 +o 𝑦) ∈ On → Ord (𝐵 +o 𝑦))
4138, 39, 403syl 18 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → Ord (𝐵 +o 𝑦))
42 ordsucsssuc 7532 . . . . . . . . . . 11 ((Ord (𝐴 +o 𝑦) ∧ Ord (𝐵 +o 𝑦)) → ((𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦) ↔ suc (𝐴 +o 𝑦) ⊆ suc (𝐵 +o 𝑦)))
4335, 41, 42syl2anc 586 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦) ↔ suc (𝐴 +o 𝑦) ⊆ suc (𝐵 +o 𝑦)))
4443biimpa 479 . . . . . . . . 9 (((𝑦 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) ∧ (𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦)) → suc (𝐴 +o 𝑦) ⊆ suc (𝐵 +o 𝑦))
45 nnasuc 8226 . . . . . . . . . . . . 13 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +o suc 𝑦) = suc (𝐴 +o 𝑦))
4645ancoms 461 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ 𝐴 ∈ ω) → (𝐴 +o suc 𝑦) = suc (𝐴 +o 𝑦))
4746adantrr 715 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐴 +o suc 𝑦) = suc (𝐴 +o 𝑦))
48 nnasuc 8226 . . . . . . . . . . . . 13 ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐵 +o suc 𝑦) = suc (𝐵 +o 𝑦))
4948ancoms 461 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵 +o suc 𝑦) = suc (𝐵 +o 𝑦))
5049adantrl 714 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐵 +o suc 𝑦) = suc (𝐵 +o 𝑦))
5147, 50sseq12d 3999 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝐴 +o suc 𝑦) ⊆ (𝐵 +o suc 𝑦) ↔ suc (𝐴 +o 𝑦) ⊆ suc (𝐵 +o 𝑦)))
5251adantr 483 . . . . . . . . 9 (((𝑦 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) ∧ (𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦)) → ((𝐴 +o suc 𝑦) ⊆ (𝐵 +o suc 𝑦) ↔ suc (𝐴 +o 𝑦) ⊆ suc (𝐵 +o 𝑦)))
5344, 52mpbird 259 . . . . . . . 8 (((𝑦 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) ∧ (𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦)) → (𝐴 +o suc 𝑦) ⊆ (𝐵 +o suc 𝑦))
5453ex 415 . . . . . . 7 ((𝑦 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦) → (𝐴 +o suc 𝑦) ⊆ (𝐵 +o suc 𝑦)))
5554imim2d 57 . . . . . 6 ((𝑦 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝐴𝐵 → (𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦)) → (𝐴𝐵 → (𝐴 +o suc 𝑦) ⊆ (𝐵 +o suc 𝑦))))
5655ex 415 . . . . 5 (𝑦 ∈ ω → ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴𝐵 → (𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦)) → (𝐴𝐵 → (𝐴 +o suc 𝑦) ⊆ (𝐵 +o suc 𝑦)))))
5756a2d 29 . . . 4 (𝑦 ∈ ω → (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦))) → ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (𝐴 +o suc 𝑦) ⊆ (𝐵 +o suc 𝑦)))))
585, 10, 15, 20, 29, 57finds 7602 . . 3 (𝐶 ∈ ω → ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (𝐴 +o 𝐶) ⊆ (𝐵 +o 𝐶))))
5958com12 32 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐶 ∈ ω → (𝐴𝐵 → (𝐴 +o 𝐶) ⊆ (𝐵 +o 𝐶))))
60593impia 1113 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 → (𝐴 +o 𝐶) ⊆ (𝐵 +o 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wss 3935  c0 4290  Ord word 6184  Oncon0 6185  suc csuc 6187  (class class class)co 7150  ωcom 7574   +o coa 8093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-oadd 8100
This theorem is referenced by:  omopthlem2  8277
  Copyright terms: Public domain W3C validator