MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nncan Structured version   Visualization version   GIF version

Theorem nncan 10156
Description: Cancellation law for subtraction. (Contributed by NM, 21-Jun-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
Assertion
Ref Expression
nncan ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − (𝐴𝐵)) = 𝐵)

Proof of Theorem nncan
StepHypRef Expression
1 subsub2 10155 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − (𝐴𝐵)) = (𝐴 + (𝐵𝐴)))
213anidm12 1374 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − (𝐴𝐵)) = (𝐴 + (𝐵𝐴)))
3 pncan3 10135 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + (𝐵𝐴)) = 𝐵)
42, 3eqtrd 2638 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − (𝐴𝐵)) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1975  (class class class)co 6522  cc 9785   + caddc 9790  cmin 10112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2227  ax-ext 2584  ax-sep 4698  ax-nul 4707  ax-pow 4759  ax-pr 4823  ax-un 6819  ax-resscn 9844  ax-1cn 9845  ax-icn 9846  ax-addcl 9847  ax-addrcl 9848  ax-mulcl 9849  ax-mulrcl 9850  ax-mulcom 9851  ax-addass 9852  ax-mulass 9853  ax-distr 9854  ax-i2m1 9855  ax-1ne0 9856  ax-1rid 9857  ax-rnegex 9858  ax-rrecex 9859  ax-cnre 9860  ax-pre-lttri 9861  ax-pre-lttrn 9862  ax-pre-ltadd 9863
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2456  df-mo 2457  df-clab 2591  df-cleq 2597  df-clel 2600  df-nfc 2734  df-ne 2776  df-nel 2777  df-ral 2895  df-rex 2896  df-reu 2897  df-rab 2899  df-v 3169  df-sbc 3397  df-csb 3494  df-dif 3537  df-un 3539  df-in 3541  df-ss 3548  df-nul 3869  df-if 4031  df-pw 4104  df-sn 4120  df-pr 4122  df-op 4126  df-uni 4362  df-br 4573  df-opab 4633  df-mpt 4634  df-id 4938  df-po 4944  df-so 4945  df-xp 5029  df-rel 5030  df-cnv 5031  df-co 5032  df-dm 5033  df-rn 5034  df-res 5035  df-ima 5036  df-iota 5749  df-fun 5787  df-fn 5788  df-f 5789  df-f1 5790  df-fo 5791  df-f1o 5792  df-fv 5793  df-riota 6484  df-ov 6525  df-oprab 6526  df-mpt2 6527  df-er 7601  df-en 7814  df-dom 7815  df-sdom 7816  df-pnf 9927  df-mnf 9928  df-ltxr 9930  df-sub 10114
This theorem is referenced by:  nnncan1  10163  nncand  10243  elz2  11222  fzrev2  12224  fzrevral  12244  fzrevral2  12245  bccmpl  12908  revrev  13308  fsumrev  14294  geolim2  14382  dvdssub2  14802  efgredleme  17920  psrcom  19171  psropprmul  19370  icccvx  22483  lebnumii  22499  pcorevlem  22560  pcorev2  22562  pi1xfrcnv  22591  efcvx  23919  sincos3rdpi  23984  cosne0  23992  logtayl  24118  logtayl2  24120  logccv  24121  acoscos  24332  sinacos  24344  cvxcl  24423  scvxcvx  24424  basellem5  24523  logfacbnd3  24660  bposlem1  24721  gausslemma2dlem1a  24802  lgsquadlem2  24818  chtppilimlem2  24875  rplogsumlem1  24885  rpvmasumlem  24888  brbtwn2  25498  ax5seglem1  25521  rescon  30283  dvasin  32464  fouriersw  38923  subsubelfzo0  40181
  Copyright terms: Public domain W3C validator