![]() |
Mathbox for Jeff Hoffman |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nndivlub | Structured version Visualization version GIF version |
Description: A factor of a positive integer cannot exceed it. (Contributed by Jeff Hoffman, 17-Jun-2008.) |
Ref | Expression |
---|---|
nndivlub | ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 / 𝐵) ∈ ℕ → 𝐵 ≤ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnre 11219 | . . 3 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℝ) | |
2 | nngt0 11241 | . . 3 ⊢ (𝐵 ∈ ℕ → 0 < 𝐵) | |
3 | 1, 2 | jca 555 | . 2 ⊢ (𝐵 ∈ ℕ → (𝐵 ∈ ℝ ∧ 0 < 𝐵)) |
4 | nnre 11219 | . . 3 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) | |
5 | nngt0 11241 | . . 3 ⊢ (𝐴 ∈ ℕ → 0 < 𝐴) | |
6 | 4, 5 | jca 555 | . 2 ⊢ (𝐴 ∈ ℕ → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
7 | nnge1 11238 | . . 3 ⊢ ((𝐴 / 𝐵) ∈ ℕ → 1 ≤ (𝐴 / 𝐵)) | |
8 | lediv2 11105 | . . . . 5 ⊢ (((𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (𝐵 ≤ 𝐴 ↔ (𝐴 / 𝐴) ≤ (𝐴 / 𝐵))) | |
9 | 8 | 3anidm23 1532 | . . . 4 ⊢ (((𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (𝐵 ≤ 𝐴 ↔ (𝐴 / 𝐴) ≤ (𝐴 / 𝐵))) |
10 | recn 10218 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
11 | 10 | adantr 472 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ∈ ℂ) |
12 | gt0ne0 10685 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0) | |
13 | divid 10906 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴 / 𝐴) = 1) | |
14 | 13 | breq1d 4814 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴 / 𝐴) ≤ (𝐴 / 𝐵) ↔ 1 ≤ (𝐴 / 𝐵))) |
15 | 11, 12, 14 | syl2anc 696 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((𝐴 / 𝐴) ≤ (𝐴 / 𝐵) ↔ 1 ≤ (𝐴 / 𝐵))) |
16 | 15 | adantl 473 | . . . 4 ⊢ (((𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → ((𝐴 / 𝐴) ≤ (𝐴 / 𝐵) ↔ 1 ≤ (𝐴 / 𝐵))) |
17 | 9, 16 | bitrd 268 | . . 3 ⊢ (((𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (𝐵 ≤ 𝐴 ↔ 1 ≤ (𝐴 / 𝐵))) |
18 | 7, 17 | syl5ibr 236 | . 2 ⊢ (((𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → ((𝐴 / 𝐵) ∈ ℕ → 𝐵 ≤ 𝐴)) |
19 | 3, 6, 18 | syl2anr 496 | 1 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 / 𝐵) ∈ ℕ → 𝐵 ≤ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∈ wcel 2139 ≠ wne 2932 class class class wbr 4804 (class class class)co 6813 ℂcc 10126 ℝcr 10127 0cc0 10128 1c1 10129 < clt 10266 ≤ cle 10267 / cdiv 10876 ℕcn 11212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-div 10877 df-nn 11213 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |