Users' Mathboxes Mathbox for Jeff Hoffman < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nndivsub Structured version   Visualization version   GIF version

Theorem nndivsub 33798
Description: Please add description here. (Contributed by Jeff Hoffman, 17-Jun-2008.)
Assertion
Ref Expression
nndivsub (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴 / 𝐶) ∈ ℕ ∧ 𝐴 < 𝐵)) → ((𝐵 / 𝐶) ∈ ℕ ↔ ((𝐵𝐴) / 𝐶) ∈ ℕ))

Proof of Theorem nndivsub
StepHypRef Expression
1 nnre 11637 . . . . . . . . 9 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
2 nnre 11637 . . . . . . . . 9 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
3 nnre 11637 . . . . . . . . . 10 (𝐶 ∈ ℕ → 𝐶 ∈ ℝ)
4 nngt0 11660 . . . . . . . . . 10 (𝐶 ∈ ℕ → 0 < 𝐶)
53, 4jca 514 . . . . . . . . 9 (𝐶 ∈ ℕ → (𝐶 ∈ ℝ ∧ 0 < 𝐶))
6 ltdiv1 11496 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 < 𝐵 ↔ (𝐴 / 𝐶) < (𝐵 / 𝐶)))
71, 2, 5, 6syl3an 1155 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐴 < 𝐵 ↔ (𝐴 / 𝐶) < (𝐵 / 𝐶)))
8 nnsub 11673 . . . . . . . 8 (((𝐴 / 𝐶) ∈ ℕ ∧ (𝐵 / 𝐶) ∈ ℕ) → ((𝐴 / 𝐶) < (𝐵 / 𝐶) ↔ ((𝐵 / 𝐶) − (𝐴 / 𝐶)) ∈ ℕ))
97, 8sylan9bb 512 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴 / 𝐶) ∈ ℕ ∧ (𝐵 / 𝐶) ∈ ℕ)) → (𝐴 < 𝐵 ↔ ((𝐵 / 𝐶) − (𝐴 / 𝐶)) ∈ ℕ))
109biimpd 231 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴 / 𝐶) ∈ ℕ ∧ (𝐵 / 𝐶) ∈ ℕ)) → (𝐴 < 𝐵 → ((𝐵 / 𝐶) − (𝐴 / 𝐶)) ∈ ℕ))
1110exp32 423 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐴 / 𝐶) ∈ ℕ → ((𝐵 / 𝐶) ∈ ℕ → (𝐴 < 𝐵 → ((𝐵 / 𝐶) − (𝐴 / 𝐶)) ∈ ℕ))))
1211com34 91 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐴 / 𝐶) ∈ ℕ → (𝐴 < 𝐵 → ((𝐵 / 𝐶) ∈ ℕ → ((𝐵 / 𝐶) − (𝐴 / 𝐶)) ∈ ℕ))))
1312imp32 421 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴 / 𝐶) ∈ ℕ ∧ 𝐴 < 𝐵)) → ((𝐵 / 𝐶) ∈ ℕ → ((𝐵 / 𝐶) − (𝐴 / 𝐶)) ∈ ℕ))
14 nnaddcl 11652 . . . . . 6 ((((𝐵 / 𝐶) − (𝐴 / 𝐶)) ∈ ℕ ∧ (𝐴 / 𝐶) ∈ ℕ) → (((𝐵 / 𝐶) − (𝐴 / 𝐶)) + (𝐴 / 𝐶)) ∈ ℕ)
1514expcom 416 . . . . 5 ((𝐴 / 𝐶) ∈ ℕ → (((𝐵 / 𝐶) − (𝐴 / 𝐶)) ∈ ℕ → (((𝐵 / 𝐶) − (𝐴 / 𝐶)) + (𝐴 / 𝐶)) ∈ ℕ))
16 nnsscn 11635 . . . . . . . . . . 11 ℕ ⊆ ℂ
17 nnne0 11663 . . . . . . . . . . 11 (𝐶 ∈ ℕ → 𝐶 ≠ 0)
18 divcl 11296 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → (𝐴 / 𝐶) ∈ ℂ)
1916, 17, 18nnssi2 33796 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐴 / 𝐶) ∈ ℂ)
20 divcl 11296 . . . . . . . . . . 11 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → (𝐵 / 𝐶) ∈ ℂ)
2116, 17, 20nnssi2 33796 . . . . . . . . . 10 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐵 / 𝐶) ∈ ℂ)
2219, 21anim12i 614 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ)) → ((𝐴 / 𝐶) ∈ ℂ ∧ (𝐵 / 𝐶) ∈ ℂ))
23223impdir 1346 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐴 / 𝐶) ∈ ℂ ∧ (𝐵 / 𝐶) ∈ ℂ))
24 npcan 10887 . . . . . . . . 9 (((𝐵 / 𝐶) ∈ ℂ ∧ (𝐴 / 𝐶) ∈ ℂ) → (((𝐵 / 𝐶) − (𝐴 / 𝐶)) + (𝐴 / 𝐶)) = (𝐵 / 𝐶))
2524ancoms 461 . . . . . . . 8 (((𝐴 / 𝐶) ∈ ℂ ∧ (𝐵 / 𝐶) ∈ ℂ) → (((𝐵 / 𝐶) − (𝐴 / 𝐶)) + (𝐴 / 𝐶)) = (𝐵 / 𝐶))
2623, 25syl 17 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (((𝐵 / 𝐶) − (𝐴 / 𝐶)) + (𝐴 / 𝐶)) = (𝐵 / 𝐶))
2726eleq1d 2895 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((((𝐵 / 𝐶) − (𝐴 / 𝐶)) + (𝐴 / 𝐶)) ∈ ℕ ↔ (𝐵 / 𝐶) ∈ ℕ))
2827biimpd 231 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((((𝐵 / 𝐶) − (𝐴 / 𝐶)) + (𝐴 / 𝐶)) ∈ ℕ → (𝐵 / 𝐶) ∈ ℕ))
2915, 28sylan9r 511 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝐴 / 𝐶) ∈ ℕ) → (((𝐵 / 𝐶) − (𝐴 / 𝐶)) ∈ ℕ → (𝐵 / 𝐶) ∈ ℕ))
3029adantrr 715 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴 / 𝐶) ∈ ℕ ∧ 𝐴 < 𝐵)) → (((𝐵 / 𝐶) − (𝐴 / 𝐶)) ∈ ℕ → (𝐵 / 𝐶) ∈ ℕ))
3113, 30impbid 214 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴 / 𝐶) ∈ ℕ ∧ 𝐴 < 𝐵)) → ((𝐵 / 𝐶) ∈ ℕ ↔ ((𝐵 / 𝐶) − (𝐴 / 𝐶)) ∈ ℕ))
32 nncn 11638 . . . . . 6 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
33323ad2ant2 1129 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐵 ∈ ℂ)
34 nncn 11638 . . . . . 6 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
35343ad2ant1 1128 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐴 ∈ ℂ)
36 nncn 11638 . . . . . . 7 (𝐶 ∈ ℕ → 𝐶 ∈ ℂ)
3736, 17jca 514 . . . . . 6 (𝐶 ∈ ℕ → (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0))
38373ad2ant3 1130 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0))
39 divsubdir 11326 . . . . 5 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐵𝐴) / 𝐶) = ((𝐵 / 𝐶) − (𝐴 / 𝐶)))
4033, 35, 38, 39syl3anc 1366 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐵𝐴) / 𝐶) = ((𝐵 / 𝐶) − (𝐴 / 𝐶)))
4140eleq1d 2895 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (((𝐵𝐴) / 𝐶) ∈ ℕ ↔ ((𝐵 / 𝐶) − (𝐴 / 𝐶)) ∈ ℕ))
4241adantr 483 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴 / 𝐶) ∈ ℕ ∧ 𝐴 < 𝐵)) → (((𝐵𝐴) / 𝐶) ∈ ℕ ↔ ((𝐵 / 𝐶) − (𝐴 / 𝐶)) ∈ ℕ))
4331, 42bitr4d 284 1 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴 / 𝐶) ∈ ℕ ∧ 𝐴 < 𝐵)) → ((𝐵 / 𝐶) ∈ ℕ ↔ ((𝐵𝐴) / 𝐶) ∈ ℕ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1082   = wceq 1531  wcel 2108  wne 3014   class class class wbr 5057  (class class class)co 7148  cc 10527  cr 10528  0cc0 10529   + caddc 10532   < clt 10667  cmin 10862   / cdiv 11289  cn 11630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631
This theorem is referenced by:  ee7.2aOLD  33802
  Copyright terms: Public domain W3C validator