MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nndivtr Structured version   Visualization version   GIF version

Theorem nndivtr 11009
Description: Transitive property of divisibility: if 𝐴 divides 𝐵 and 𝐵 divides 𝐶, then 𝐴 divides 𝐶. Typically, 𝐶 would be an integer, although the theorem holds for complex 𝐶. (Contributed by NM, 3-May-2005.)
Assertion
Ref Expression
nndivtr (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ) ∧ ((𝐵 / 𝐴) ∈ ℕ ∧ (𝐶 / 𝐵) ∈ ℕ)) → (𝐶 / 𝐴) ∈ ℕ)

Proof of Theorem nndivtr
StepHypRef Expression
1 nnmulcl 10990 . . 3 (((𝐵 / 𝐴) ∈ ℕ ∧ (𝐶 / 𝐵) ∈ ℕ) → ((𝐵 / 𝐴) · (𝐶 / 𝐵)) ∈ ℕ)
2 nncn 10975 . . . . . . 7 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
323ad2ant2 1081 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ) → 𝐵 ∈ ℂ)
4 simp3 1061 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ) → 𝐶 ∈ ℂ)
5 nncn 10975 . . . . . . . 8 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
6 nnne0 11000 . . . . . . . 8 (𝐴 ∈ ℕ → 𝐴 ≠ 0)
75, 6jca 554 . . . . . . 7 (𝐴 ∈ ℕ → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
873ad2ant1 1080 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ) → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
9 nnne0 11000 . . . . . . . 8 (𝐵 ∈ ℕ → 𝐵 ≠ 0)
102, 9jca 554 . . . . . . 7 (𝐵 ∈ ℕ → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
11103ad2ant2 1081 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
12 divmul24 10676 . . . . . 6 (((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))) → ((𝐵 / 𝐴) · (𝐶 / 𝐵)) = ((𝐵 / 𝐵) · (𝐶 / 𝐴)))
133, 4, 8, 11, 12syl22anc 1324 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ) → ((𝐵 / 𝐴) · (𝐶 / 𝐵)) = ((𝐵 / 𝐵) · (𝐶 / 𝐴)))
142, 9dividd 10746 . . . . . . 7 (𝐵 ∈ ℕ → (𝐵 / 𝐵) = 1)
1514oveq1d 6622 . . . . . 6 (𝐵 ∈ ℕ → ((𝐵 / 𝐵) · (𝐶 / 𝐴)) = (1 · (𝐶 / 𝐴)))
16153ad2ant2 1081 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ) → ((𝐵 / 𝐵) · (𝐶 / 𝐴)) = (1 · (𝐶 / 𝐴)))
17 divcl 10638 . . . . . . . . . 10 ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐶 / 𝐴) ∈ ℂ)
18173expb 1263 . . . . . . . . 9 ((𝐶 ∈ ℂ ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) → (𝐶 / 𝐴) ∈ ℂ)
197, 18sylan2 491 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℕ) → (𝐶 / 𝐴) ∈ ℂ)
2019ancoms 469 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℂ) → (𝐶 / 𝐴) ∈ ℂ)
2120mulid2d 10005 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℂ) → (1 · (𝐶 / 𝐴)) = (𝐶 / 𝐴))
22213adant2 1078 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ) → (1 · (𝐶 / 𝐴)) = (𝐶 / 𝐴))
2313, 16, 223eqtrd 2659 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ) → ((𝐵 / 𝐴) · (𝐶 / 𝐵)) = (𝐶 / 𝐴))
2423eleq1d 2683 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ) → (((𝐵 / 𝐴) · (𝐶 / 𝐵)) ∈ ℕ ↔ (𝐶 / 𝐴) ∈ ℕ))
251, 24syl5ib 234 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ) → (((𝐵 / 𝐴) ∈ ℕ ∧ (𝐶 / 𝐵) ∈ ℕ) → (𝐶 / 𝐴) ∈ ℕ))
2625imp 445 1 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ) ∧ ((𝐵 / 𝐴) ∈ ℕ ∧ (𝐶 / 𝐵) ∈ ℕ)) → (𝐶 / 𝐴) ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  (class class class)co 6607  cc 9881  0cc0 9883  1c1 9884   · cmul 9888   / cdiv 10631  cn 10967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-iun 4489  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-om 7016  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-er 7690  df-en 7903  df-dom 7904  df-sdom 7905  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-div 10632  df-nn 10968
This theorem is referenced by:  permnn  13056  infpnlem1  15541
  Copyright terms: Public domain W3C validator