MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnind Structured version   Visualization version   GIF version

Theorem nnind 11658
Description: Principle of Mathematical Induction (inference schema). The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. See nnaddcl 11663 for an example of its use. See nn0ind 12080 for induction on nonnegative integers and uzind 12077, uzind4 12309 for induction on an arbitrary upper set of integers. See indstr 12319 for strong induction. See also nnindALT 11659. This is an alternative for Metamath 100 proof #74. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 16-Jun-2013.)
Hypotheses
Ref Expression
nnind.1 (𝑥 = 1 → (𝜑𝜓))
nnind.2 (𝑥 = 𝑦 → (𝜑𝜒))
nnind.3 (𝑥 = (𝑦 + 1) → (𝜑𝜃))
nnind.4 (𝑥 = 𝐴 → (𝜑𝜏))
nnind.5 𝜓
nnind.6 (𝑦 ∈ ℕ → (𝜒𝜃))
Assertion
Ref Expression
nnind (𝐴 ∈ ℕ → 𝜏)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝜓,𝑥   𝜒,𝑥   𝜃,𝑥   𝜏,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝐴(𝑦)

Proof of Theorem nnind
StepHypRef Expression
1 1nn 11651 . . . . . 6 1 ∈ ℕ
2 nnind.5 . . . . . 6 𝜓
3 nnind.1 . . . . . . 7 (𝑥 = 1 → (𝜑𝜓))
43elrab 3682 . . . . . 6 (1 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (1 ∈ ℕ ∧ 𝜓))
51, 2, 4mpbir2an 709 . . . . 5 1 ∈ {𝑥 ∈ ℕ ∣ 𝜑}
6 elrabi 3677 . . . . . . 7 (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → 𝑦 ∈ ℕ)
7 peano2nn 11652 . . . . . . . . . 10 (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℕ)
87a1d 25 . . . . . . . . 9 (𝑦 ∈ ℕ → (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℕ))
9 nnind.6 . . . . . . . . 9 (𝑦 ∈ ℕ → (𝜒𝜃))
108, 9anim12d 610 . . . . . . . 8 (𝑦 ∈ ℕ → ((𝑦 ∈ ℕ ∧ 𝜒) → ((𝑦 + 1) ∈ ℕ ∧ 𝜃)))
11 nnind.2 . . . . . . . . 9 (𝑥 = 𝑦 → (𝜑𝜒))
1211elrab 3682 . . . . . . . 8 (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (𝑦 ∈ ℕ ∧ 𝜒))
13 nnind.3 . . . . . . . . 9 (𝑥 = (𝑦 + 1) → (𝜑𝜃))
1413elrab 3682 . . . . . . . 8 ((𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ ((𝑦 + 1) ∈ ℕ ∧ 𝜃))
1510, 12, 143imtr4g 298 . . . . . . 7 (𝑦 ∈ ℕ → (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → (𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑}))
166, 15mpcom 38 . . . . . 6 (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → (𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑})
1716rgen 3150 . . . . 5 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} (𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑}
18 peano5nni 11643 . . . . 5 ((1 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ∧ ∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} (𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑}) → ℕ ⊆ {𝑥 ∈ ℕ ∣ 𝜑})
195, 17, 18mp2an 690 . . . 4 ℕ ⊆ {𝑥 ∈ ℕ ∣ 𝜑}
2019sseli 3965 . . 3 (𝐴 ∈ ℕ → 𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝜑})
21 nnind.4 . . . 4 (𝑥 = 𝐴 → (𝜑𝜏))
2221elrab 3682 . . 3 (𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (𝐴 ∈ ℕ ∧ 𝜏))
2320, 22sylib 220 . 2 (𝐴 ∈ ℕ → (𝐴 ∈ ℕ ∧ 𝜏))
2423simprd 498 1 (𝐴 ∈ ℕ → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3140  {crab 3144  wss 3938  (class class class)co 7158  1c1 10540   + caddc 10542  cn 11640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-1cn 10597
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-nn 11641
This theorem is referenced by:  nnindALT  11659  nnindd  11660  nn1m1nn  11661  nnaddcl  11663  nnmulcl  11664  nnge1  11668  nnne0  11674  nnsub  11684  nneo  12069  peano5uzi  12074  nn0ind-raph  12085  ser1const  13429  expcllem  13443  expeq0  13462  expmordi  13534  seqcoll  13825  relexpsucnnl  14393  relexpcnv  14396  relexprelg  14399  relexpnndm  14402  relexpaddnn  14412  climcndslem2  15207  sqrt2irr  15604  gcdmultipleOLD  15902  rplpwr  15909  prmind2  16031  prmdvdsexp  16061  eulerthlem2  16121  pcmpt  16230  prmpwdvds  16242  vdwlem10  16328  mulgnnass  18264  imasdsf1olem  22985  ovolunlem1a  24099  ovolicc2lem3  24122  voliunlem1  24153  volsup  24159  dvexp  24552  plyco  24833  dgrcolem1  24865  vieta1  24903  emcllem6  25580  bposlem5  25866  2sqlem10  26006  dchrisum0flb  26088  iuninc  30314  ofldchr  30889  nexple  31270  esumfzf  31330  rrvsum  31714  subfacp1lem6  32434  cvmliftlem10  32543  bcprod  32972  faclimlem1  32977  incsequz  35025  bfplem1  35102  nnn1suc  39166  nnadd1com  39167  nnaddcom  39168  nnadddir  39170  nnmul1com  39171  nnmulcom  39172  2nn0ind  39549  relexpxpnnidm  40055  relexpss1d  40057  iunrelexpmin1  40060  relexpmulnn  40061  trclrelexplem  40063  iunrelexpmin2  40064  relexp0a  40068  cotrcltrcl  40077  trclimalb2  40078  cotrclrcl  40094  inductionexd  40512  fmuldfeq  41871  dvnmptconst  42233  stoweidlem20  42312  wallispilem4  42360  wallispi2lem1  42363  wallispi2lem2  42364  dirkertrigeqlem1  42390  iccelpart  43600  nn0sumshdiglem2  44689
  Copyright terms: Public domain W3C validator